cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355481 Number of pairs of Dyck paths of semilength n such that the midpoint of the first is above the midpoint of the second.

Original entry on oeis.org

0, 0, 1, 4, 49, 441, 4806, 52956, 614713, 7341697, 90118054, 1130414649, 14447230854, 187609607862, 2470253990556, 32922380442828, 443493622670313, 6031353319151961, 82725531355436886, 1143385727109903585, 15913217995801644870, 222875331740976566070
Offset: 0

Views

Author

Alois P. Heinz, Oct 07 2022

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1, (2*n*(90*n^5-309*n^4+147*n^3+
          124*n^2-135*n+35)*b(n-1)+4*(n-1)^2*(4*n-5)*(4*n-3)*(15*n^2-4*n-12)*
           b(n-2))/(n*(n+1)^3*(15*n^2-34*n+7)))
        end:
    a:= n-> ((binomial(n+n, n)/(n+1))^2-b(n))/2:
    seq(a(n), n=0..21);
  • Mathematica
    A129123[n_] := Sum[(Binomial[n, k]-Binomial[n, k-1])^4, {k, 0, Floor[n/2]}];
    a[n_] := (CatalanNumber[n]^2 - A129123[n])/2;
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 16 2022 *)

Formula

a(n) = (A001246(n) - A129123(n))/2 = (A000108(n)^2 - A129123(n))/2.