A355481 Number of pairs of Dyck paths of semilength n such that the midpoint of the first is above the midpoint of the second.
0, 0, 1, 4, 49, 441, 4806, 52956, 614713, 7341697, 90118054, 1130414649, 14447230854, 187609607862, 2470253990556, 32922380442828, 443493622670313, 6031353319151961, 82725531355436886, 1143385727109903585, 15913217995801644870, 222875331740976566070
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..839
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 1, (2*n*(90*n^5-309*n^4+147*n^3+ 124*n^2-135*n+35)*b(n-1)+4*(n-1)^2*(4*n-5)*(4*n-3)*(15*n^2-4*n-12)* b(n-2))/(n*(n+1)^3*(15*n^2-34*n+7))) end: a:= n-> ((binomial(n+n, n)/(n+1))^2-b(n))/2: seq(a(n), n=0..21);
-
Mathematica
A129123[n_] := Sum[(Binomial[n, k]-Binomial[n, k-1])^4, {k, 0, Floor[n/2]}]; a[n_] := (CatalanNumber[n]^2 - A129123[n])/2; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 16 2022 *)