cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355489 Numbers k such that A000120(k) = A007814(k) + 2.

Original entry on oeis.org

3, 5, 9, 14, 17, 22, 26, 33, 38, 42, 50, 60, 65, 70, 74, 82, 92, 98, 108, 116, 129, 134, 138, 146, 156, 162, 172, 180, 194, 204, 212, 228, 248, 257, 262, 266, 274, 284, 290, 300, 308, 322, 332, 340, 356, 376, 386, 396, 404, 420, 440, 452, 472, 488, 513, 518
Offset: 1

Views

Author

Mikhail Kurkov, Jul 04 2022 [verification needed]

Keywords

Comments

Each term k, doubled, can be put into a one-to-one correspondence with a maximal Schreier set (a subset of the positive integers with cardinality equal to the minimum element in the set) by interpreting the 1-based position of the ones in the binary expansion of 2*k (where position 1 corresponds to the least significant bit) as the elements of the corresponding maximal Schreier set. See A373556 for more information. Cf. also A371176. - Paolo Xausa, Jun 13 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[500], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 2 &] (* Amiram Eldar, Jul 04 2022 *)
  • PARI
    r=quadgen(5);
    A355489_upto(nMax)={my(v1,v2,v3,v4); v1=vector(nMax,i,0); v1[1]=1; for(i=1,nMax-1,v1[i+1]=v1[i\r+1]+1); v2=vector(nMax,i,0); v2[1]=1; for(i=2,nMax,v2[i]=v1[i]-v1[i-1]); v3=vector(nMax,i,0); for(i=1,3,v3[i]=2^(i-1)); for(i=4,nMax,v3[i]=if(v2[i-1]==1,5,2*v3[i-fibonacci(v1[i-1]+1)]-if(v2[i]==1,1,0))); v4=vector(nMax,i,0); v4[1]=3; for(i=2,nMax,v4[i]=v4[i-1]+v3[i]); v4}
    
  • PARI
    isok(k) = hammingweight(k) == valuation(k, 2) + 2; \\ Michel Marcus, Jul 06 2022
    (Python 3.10+)
    from itertools import count, islice
    def A355489_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n.bit_count()==(n&-n).bit_length()+1,count(max(startvalue,1)))
    A355480_list = list(islice(A355489_gen(),30)) # Chai Wah Wu, Jul 15 2022

Formula

a(n) = a(n-1) + b(n) for n > 1 with a(1) = 3 where b(n) = {2^(n-1) if n < 4; 5 if c(n-1) = 1; otherwise 2*b(n - A000045(A072649(n-1) + 1)) - [c(n) = 1]} and where c(n) = A010056(n).
A025480(a(n)-1) = A048679(n) for n > 0.
a(A000045(n)) = 2^(n-1) + 1 for n > 1.