A355522 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with maximal difference k, if singletons have maximal difference 0.
2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 3, 2, 1, 1, 2, 6, 3, 2, 1, 1, 4, 6, 6, 2, 2, 1, 1, 3, 10, 6, 5, 2, 2, 1, 1, 4, 11, 11, 6, 4, 2, 2, 1, 1, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1
Offset: 2
Examples
Triangle begins: 2 2 1 3 1 1 2 3 1 1 4 3 2 1 1 2 6 3 2 1 1 4 6 6 2 2 1 1 3 10 6 5 2 2 1 1 4 11 11 6 4 2 2 1 1 2 16 13 10 5 4 2 2 1 1 6 17 19 12 9 4 4 2 2 1 1 2 24 24 18 11 8 4 4 2 2 1 1 4 27 34 22 17 10 7 4 4 2 2 1 1 4 35 39 33 20 15 9 7 4 4 2 2 1 1 5 39 56 39 30 19 14 8 7 4 4 2 2 1 1 For example, row n = 8 counts the following reversed partitions: (8) (233) (35) (125) (26) (116) (17) (44) (1223) (134) (11114) (1115) (2222) (11123) (224) (11111111) (11222) (1124) (111122) (1133) (1111112) (111113)
Links
Crossrefs
Crossrefs found in the link are not repeated here.
Leading terms are A000005.
Row sums are A000041.
This is a trimmed version of A238353, which extends to k = n.
For minimum instead of maximum we have A238354.
Ignoring singletons entirely gives A238710.
A279945 counts partitions by number of distinct differences.
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n], If[Length[#]==1,0,Max@@Differences[#]]==k&]],{n,2,15},{k,0,n-2}]
Comments