A355547 Numbers k such that x^2 - s*x + p has noninteger roots with s sum of digits of k and p product of digits of k.
1, 2, 3, 5, 6, 7, 8, 9, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 144, 145, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 171
Offset: 1
Examples
k = 111 is a term, since the sum of the digits of 111 is 3, the product of the digits of 111 is 1 and the roots (3 - sqrt(5))/2 and (3 + sqrt(5))/2 of x^2 - 3*x + 1 are not integers.
Programs
-
Mathematica
kmax=171;kdig:=IntegerDigits[k]; s:=Total[kdig]; p:=Product[Part[kdig,i],{i,Length[kdig]}]; a:={};For[k=0,k<=kmax,k++,If[Not[Element[x/.Solve[x^2-s*x+p==0,x],Integers]],AppendTo[a,k]]]; a
Formula
a(n) ~ A052382(n) ~ n^k, where k = log(10)/log(9) = 1.04795.... - Charles R Greathouse IV, Jul 07 2022