cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355576 Number A(n,k) of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= k^(i-1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 4, 24, 44, 1, 0, 1, 1, 5, 58, 541, 516, 1, 0, 1, 1, 6, 115, 3236, 35649, 11622, 1, 0, 1, 1, 7, 201, 12885, 713727, 6979689, 512022, 1, 0, 1, 1, 8, 322, 39656, 7173370, 627642640, 4085743032, 44588536, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 07 2022

Keywords

Examples

			A(2,3) = 3: (1,1), (1,2), (1,3).
A(3,2) = 7: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,2,2), (1,2,3), (1,2,4).
A(3,3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9).
Square array A(n,k) begins:
  1, 1,     1,       1,         1,           1,            1, ...
  1, 1,     1,       1,         1,           1,            1, ...
  0, 1,     2,       3,         4,           5,            6, ...
  0, 1,     7,      24,        58,         115,          201, ...
  0, 1,    44,     541,      3236,       12885,        39656, ...
  0, 1,   516,   35649,    713727,     7173370,     46769781, ...
  0, 1, 11622, 6979689, 627642640, 19940684251, 330736663032, ...
		

Crossrefs

Rows n=1-4 give: A000012, A001477, A081436(k-1) for k>0, A354608.
Main diagonal gives A355561.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -add(
          A(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, -Sum[A[j, k]*(-1)^(n-j)*Binomial[If[j==0, 1, k^j], n-j], {j, 0, n-1}]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Sep 21 2022, after Alois P. Heinz *)
Showing 1-1 of 1 results.