A355572 Largest LCM of partitions of n into odd parts.
1, 1, 3, 3, 5, 5, 7, 15, 15, 21, 21, 35, 35, 45, 105, 105, 105, 105, 165, 165, 315, 315, 385, 385, 495, 1155, 1155, 1365, 1365, 1365, 1365, 3465, 3465, 4095, 4095, 5005, 5005, 6435, 15015, 15015, 15015, 15015, 19635, 19635, 45045, 45045, 45045, 45045, 58905, 58905, 69615, 69615
Offset: 1
Keywords
Examples
The partitions of n=8 into odd parts are 7+1, 5+3, 5+1+1+1, 3+3+1+1, 3+1+1+1+1+1, 1+1+1+1+1+1+1+1, and the partition with largest LCM among those is 5+3, which has LCM(5,3)=5*3=15, so a(8)=15.
Links
- Petr Gregor, Arturo Merino, and Torsten Mütze, The Hamilton compression of highly symmetric graphs, arXiv preprint arXiv:2205.08126 [math.CO], 2022.
Programs
-
PARI
a(n) = my(x=1); forpart(p=n, if (!#select(x->((x%2)==0), Vec(p)), x = max(x, lcm(Vec(p))))); x; \\ Michel Marcus, Jul 08 2022
Comments