cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355579 Numbers k such that A072079(k)/k sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 72, 144, 288, 432, 864, 1728, 2592, 3456, 5184, 10368, 20736, 31104, 41472, 62208, 124416, 248832, 373248, 746496, 1492992, 2239488, 2985984, 4478976, 8957952, 17915904, 26873856, 53747712, 107495424, 161243136, 214990848, 322486272
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Comments

Numbers m such that A072079(m)/m > A072079(k)/k for all k < m.
All the terms are 3-smooth numbers (A003586).
Equivalently, 3-smooth numbers k such that A000203(k)/k sets a new record.
Analogous to superabundant numbers (A004394) with 3-smooth numbers only.

Examples

			The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The corresponding values of A072079(k)/k are 1, 3/2, 4/3, 7/4, 1/5 and 2. The record values, 1, 3/2, 7/4 and 2, occur at 1, 2, 4 and 6, the first 4 terms of this sequence.
		

Crossrefs

Subsequence of A003586 and A355578.

Programs

  • Mathematica
    s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/(2*n), 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq
  • PARI
    lista(nmax) = {my(list = List(), rmax = 0, e2, e3, r); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); r = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/(2*n), 0); if(r > rmax, rmax = r;  listput(list, n))); Vec(list)};
    
  • Python
    from fractions import Fraction
    from sympy import multiplicity as v
    from itertools import count, takewhile
    def f(n): return Fraction((2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2, n)
    def smooth3(lim):
        pows2 = list(takewhile(lambda x: x record: record = v; records.append(argv)
        return records
    print(aupto(10**9)) # Michael S. Branicky, Jul 08 2022

Formula

Limit_{n->oo} A072079(a(n))/a(n) = lim_{n->oo} A000203(a(n))/a(n) = 3.
Showing 1-1 of 1 results.