cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355583 a(n) is the number of the 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 1, 4, 3, 4, 1, 6, 1, 2, 4, 5, 1, 6, 1, 6, 2, 2, 1, 8, 3, 2, 4, 3, 1, 8, 1, 6, 2, 2, 2, 9, 1, 2, 2, 8, 1, 4, 1, 3, 6, 2, 1, 10, 1, 6, 2, 3, 1, 8, 2, 4, 2, 2, 1, 12, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 6, 3, 1, 4, 1, 10, 5, 2, 1, 6, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return (v(2, n)+1)*(v(3, n)+1)*(v(5, n)+1)
    print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = e+1 if p <= 5 and 1 otherwise.
a(n) = (A007814(n) + 1)*(A007949(n) + 1)*(A112765(n) + 1).
a(n) = A000005(A355582(n)).
a(n) <= A000005(n), with equality if and only if n is in A051037.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15/4.
Dirichlet g.f.: zeta(s)/((1-1/2^s)*(1-1/3^s)*(1-1/5^s)). - Amiram Eldar, Dec 25 2022