cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060753 Denominator of 1*2*4*6*...*(prime(n-1)-1) / (2*3*5*7*...*prime(n-1)).

Original entry on oeis.org

1, 2, 3, 15, 35, 77, 1001, 17017, 323323, 676039, 2800733, 86822723, 3212440751, 131710070791, 5663533044013, 11573306655157, 47183480978717, 95993978542907, 5855632691117327, 392327390304860909
Offset: 1

Views

Author

Frank Ellermann, Apr 23 2001

Keywords

Comments

Equivalently, numerator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A038110). - N. J. A. Sloane, Apr 17 2015
a(n)/A038110(n) is the supremum of the abundancy index sigma(k)/k = A000203(k)/k of the prime(n-1)-smooth numbers, for n>1 (Laatsch, 1986). - Amiram Eldar, Oct 26 2021
From Amiram Eldar, Jul 10 2022: (Start)
a(n)/A038110(n) is the sum of the reciprocals of the prime(n-1)-smooth numbers, for n>1.
a(n)/A038110(n) is the asymptotic mean of the number of prime(n-1)-smooth divisors of the positive integers, for n>1 (cf. A001511, A072078, A355583). (End)

Examples

			A038110(50)/ a(50) = 0.1020..., exp(-gamma)/log(229) = 0.1033...
1*2*4/(2*3*5) = 4/15 has denominator a(4) = 15. - _Jonathan Sondow_, Jan 31 2014
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 429.

Crossrefs

Programs

  • Magma
    [1] cat [Denominator((&*[NthPrime(k-1)-1:k in [2..n]])/(&*[NthPrime(k-1):k in [2..n]])):n in [2..20]]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Table[Denominator@ Product[EulerPhi@ Prime[i]/Prime@ i, {i, n}], {n, 0, 19}] (* Michael De Vlieger, Jan 10 2015 *)
    {1}~Join~Denominator@ FoldList[Times, Table[EulerPhi@ Prime[n]/Prime@ n, {n, 19}]] (* Michael De Vlieger, Jul 26 2016 *)
    b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
    Denominator@ Table[b[n], {n, 0, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
    Join[{1},Denominator[With[{nn=20},FoldList[Times,Prime[Range[nn]]-1]/FoldList[ Times,Prime[Range[nn]]]]]] (* Harvey P. Dale, Apr 17 2022 *)

Formula

a(n) = A002110(n) / gcd( A005867(n), A002110(n) ).
A038110(n) / a(n) ~ exp( -gamma ) / log( prime(n) ), Mertens's theorem for x = prime(n) = A000040(n).
A038110(n) / a(n) = A005867(n) / A002110(n). - corrected by Simon Tatham, Jul 26 2016
a(n) = A038111(n) / prime(n). - Vladimir Shevelev, Jan 10 2014
a(n) = A038110(n) + A161527(n-1). - Jamie Morken, Jun 19 2019

Extensions

Definition corrected by Jonathan Sondow, Jan 31 2014

A355582 a(n) is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 20, 3, 2, 1, 24, 25, 2, 27, 4, 1, 30, 1, 32, 3, 2, 5, 36, 1, 2, 3, 40, 1, 6, 1, 4, 45, 2, 1, 48, 1, 50, 3, 4, 1, 54, 5, 8, 3, 2, 1, 60, 1, 2, 9, 64, 5, 6, 1, 4, 3, 10, 1, 72, 1, 2, 75, 4, 1, 6, 1, 80
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Cf. A379005 (rgs-transform), A379006 (ordinal transform).

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = 3^valuation(n, 3) * 5^valuation(n, 5) << valuation(n, 2);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return 2**v(2, n) * 3**v(3, n) * 5**v(5, n)
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = p^e if p <= 5 and 1 otherwise.
a(n) = A006519(n) * A038500(n) * A060904(n).
a(n) = 2^A007814(n) * 3^A007949(n) * 5^A112765(n).
a(n) = n / A165725(n).
Dirichlet g.f.: zeta(s)*(2^s-1)*(3^s-1)*(5^s-1)/((2^s-2)*(3^s-3)*(5^s-5)). - Amiram Eldar, Dec 25 2022
Sum_{k=1..n} a(k) ~ 2*n*log(n)^3 / (45*log(2)*log(3)*log(5)) + O(n*log(n)^2). - Vaclav Kotesovec, Apr 20 2025

A355584 a(n) is the sum of the 5-smooth divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 1, 28, 1, 3, 24, 31, 1, 39, 1, 42, 4, 3, 1, 60, 31, 3, 40, 7, 1, 72, 1, 63, 4, 3, 6, 91, 1, 3, 4, 90, 1, 12, 1, 7, 78, 3, 1, 124, 1, 93, 4, 7, 1, 120, 6, 15, 4, 3, 1, 168, 1, 3, 13, 127, 6, 12, 1, 7, 4, 18, 1, 195, 1, 3, 124, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Sum of the p-smooth divisors of n: A038712 (2), A072079 (3), this sequence (5).

Programs

  • Mathematica
    a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
  • PARI
    a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
    
  • Python
    from sympy import multiplicity as v
    def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8
    print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)*(5^(A112765(n)+1)-1)/8.
a(n) = A000203(A355582(n)).
a(n) <= A000203(n), with equality if and only if n is in A051037.
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - Amiram Eldar, Dec 25 2022

A355710 Numbers k such that k and k+1 have the same number of 5-smooth divisors.

Original entry on oeis.org

2, 21, 33, 34, 38, 57, 85, 86, 93, 94, 104, 116, 122, 141, 145, 146, 154, 158, 171, 177, 182, 189, 201, 205, 213, 214, 218, 237, 265, 266, 273, 296, 302, 321, 326, 332, 334, 338, 344, 357, 362, 381, 385, 387, 393, 394, 398, 417, 445, 446, 453, 454, 475, 476, 482
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1).

Examples

			2 is a term since A355583(2) = A355583(3) = 2.
		

Crossrefs

Cf. A355583, A355709 (3-smooth analog).
Subsequences: A355711, A355712.

Programs

  • Mathematica
    s[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); Select[Range[500], s[#] == s[#+1] &]
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); for(k = 2, 500, s2 = s(k); if(s1 == s2, print1(k-1,", ")); s1 = s2);

A355711 Starts of runs of 3 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

33, 85, 93, 145, 213, 265, 393, 445, 453, 475, 505, 633, 685, 753, 805, 813, 865, 933, 985, 993, 1045, 1113, 1165, 1293, 1345, 1353, 1405, 1430, 1533, 1585, 1624, 1653, 1705, 1713, 1765, 1833, 1885, 1893, 1945, 2013, 2065, 2193, 2245, 2253, 2275, 2305, 2433, 2485
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2).

Examples

			33 is a term since A355583(33) = A355583(34) = A355583(35) = 2.
		

Crossrefs

Cf. A355583.
Subsequence of A355710.
A355712 is a subsequence.
Similar sequences: A005238, A006073, A045939, A332313, A332387.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 2500}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); for(k = 3, 2500, s3 = s(k); if(s1 == s2 && s2 == s3, print1(k-2,", ")); s1 = s2; s2 = s3);

A355712 Starts of runs of 4 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

28374, 133623, 136374, 187623, 190374, 298374, 349623, 352374, 457623, 460374, 511623, 619623, 622374, 673623, 676374, 781623, 838374, 943623, 946374, 997623, 1000374, 1108374, 1159623, 1162374, 1267623, 1270374, 1321623, 1429623, 1432374, 1483623, 1486374, 1591623
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2) = A355583(k+3).
Are there runs of 5 consecutive numbers with the same number of 5-smooth divisors? There are no such runs below 10^10.

Examples

			28374 is a term since A355583(28374) = A355583(28375) = A355583(28376) = A355583(28377) = 4.
		

Crossrefs

Cf. A355583.
Subsequence of A355710 and A355711.
Similar sequences: A006601, A332314, A332388.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 4; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 10^6}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); s3 = s(3); for(k = 4, 1.6e6, s4 = s(k); if(s1 == s2 && s2 == s3 && s3 == s4, print1(k-3,", ")); s1 = s2; s2 = s3; s3 = s4);

A356006 The number of prime divisors of n that are not greater than 5, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 0, 3, 0, 1, 2, 4, 0, 3, 0, 3, 1, 1, 0, 4, 2, 1, 3, 2, 0, 3, 0, 5, 1, 1, 1, 4, 0, 1, 1, 4, 0, 2, 0, 2, 3, 1, 0, 5, 0, 3, 1, 2, 0, 4, 1, 3, 1, 1, 0, 4, 0, 1, 2, 6, 1, 2, 0, 2, 1, 2, 0, 5, 0, 1, 3, 2, 0, 2, 0, 5, 4, 1, 0, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2022

Keywords

Comments

Equivalently, the number of prime divisors, counted with multiplicity, of the largest 5-smooth divisor of n.

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ IntegerExponent[n, {2, 3, 5}]; Array[a, 100]
  • PARI
    a(n) = valuation(n, 2) + valuation(n, 3) + valuation(n, 5);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return v(2, n) + v(3, n) + v(5, n)
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jul 25 2022

Formula

Totally additive with a(p) = 1 if p <= 5, and 0 otherwise.
a(n) = A007814(n) + A007949(n) + A112765(n).
a(n) = A001222(A355582(n)).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7/4.

A382489 The number of unitary 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 30: repeat [1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8].
In general, the sequence of the number of unitary prime(k)-smooth divisors of n, for k >= 1, is periodic with period A002110(k).
Decimal expansion of 135804580460138015713571358020/111111111111111111111111111111.
Continued fraction expansion of 808690/(525316 + sqrt(382161348866)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), A382488 (k = 2), this sequence (k = 3).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[n, p], 2, 1], {p, {2, 3, 5}}]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> !((n % 30) % x) + 1, [2, 3, 5]))

Formula

Multiplicative with a(p^e) = 2 if p <= 5, and 1 otherwise.
a(n) = A034444(A355582(n)).
a(n) = A034444(n) if and only if n is 5-smooth (A051037).
a(n) = A355583(n) if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 12/5.
In general, the asymptotic mean of the number of unitary prime(k)-smooth divisors of n is A054640(k)/A002110(k) = A236435(k)/A236436(k).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * (1 + 1/5^s) * zeta(s).
In general, Dirichlet g.f. of the number of unitary prime(k)-smooth divisors of n is zeta(s) * Product_{p prime <= prime(k)} (1 + 1/p^s).

A076302 Triangle T(n,k) = number of k-smooth divisors of n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 1, 4, 4, 4, 4, 4, 4, 4, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2003

Keywords

Examples

			Triangle begins:
                   1
                 1   2
               1   1   2
             1   3   3   3
           1   1   1   1   2
         1   2   4   4   4   4
       1   1   1   1   1   1   2
     1   4   4   4   4   4   4   4
   1   1   3   3   3   3   3   3   3
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]);
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)

Formula

T(n,n) = A000005(n);
T(n,2) = A001511(n) for n>1.
T(n,3) = A072078(n) for n>2.
T(n,5) = A355583(n) for n>4.
Limit_{m->oo} (1/m) * Sum_{n=k..m} T(n,k) = 1/Product_{p prime <= k} (1 - 1/p). - Amiram Eldar, Apr 17 2025
Showing 1-9 of 9 results.