cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120271 a(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)).

Original entry on oeis.org

1, 3, 7, 23, 121, 21, 173, 1597, 17927, 127469, 129317, 43619, 44081, 44521, 1033223, 13538159, 395369371, 132680013, 400467919, 402757063, 1214947859, 1221110939, 50305908619, 50529880549, 101470376303, 509322834499, 8691337402883
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a(n) is squarefree except for n = 5, 14, 49, ... where squared prime factors are 11, 211, 479, ...
a(n)/A128646(n) is the asymptotic mean over the positive integers of the number of prime divisors that are not greater than prime(n), counted with multiplicity (cf. A007814, A169611, A356006). - Amiram Eldar, Jul 23 2022

Crossrefs

Cf. A128646 (denominators), A119686, A006093, A000040.

Programs

  • Maple
    R:= [seq(1/(ithprime(k)-1),k=1..40)]:
    S:= ListTools:-PartialSums(R):
    A:= map(numer,S); # Robert Israel, Jan 12 2025
  • Mathematica
    Numerator[Table[Sum[1/(Prime[i]-1),{i,1,n}],{n,1,50}]]
    Accumulate[1/(Prime[Range[30]]-1)]//Numerator (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 1/(prime(k)-1))); \\ Michel Marcus, Oct 02 2016

Formula

a(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)).
a(n) = A078456(n) * A135212(n). - Alexander Adamchuk, Nov 23 2007

A178146 a(n) is the number of distinct prime factors <= 5 of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Vladimir Shevelev, May 21 2010

Keywords

Comments

The sequence is periodic with period {0 1 1 1 1 2 0 1 1 2 0 2 0 1 2 1 0 2 0 2 1 1 0 2 1 1 1 1 0 3} of length 30. There are 26 coincidences on the interval [1,30] with A156542.

Crossrefs

Number of distinct prime factors <= p: A171182 (p=3), this sequence (p=5), A210679 (p=7).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[-x^2*(3*x^6 + 6*x^5 + 7*x^4 + 6*x^3 + 5*x^2 + 3*x + 1)/((x - 1)*(x + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* G. C. Greubel, May 16 2017 *)
    LinearRecurrence[{-2,-2,-1,0,1,2,2,1},{0,1,1,1,1,2,0,1},120] (* Harvey P. Dale, Sep 29 2021 *)
    a[n_] := PrimeNu[GCD[n, 30]]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1)/((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)))) \\ G. C. Greubel, May 16 2017
    
  • PARI
    a(n) = omega(gcd(n, 30)); \\ Amiram Eldar, Sep 16 2023

Formula

a(n) = a(n-2) + a(n-3) - a(n-7) - a(n-8) + a(n-10), a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 1, a(5) = 1, a(6) = 2, a(7) = 0, a(8) = 1, a(9) = 1, a(10) = 2.
G.f.: -x^2*(3*x^6+6*x^5+7*x^4+6*x^3+5*x^2+3*x+1) / ((x-1)*(x+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Mar 13 2013
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 5, and 0 otherwise.
a(n) = A059841(n) + A079978(n) + A079998(n).
a(n) = A001221(gcd(n, 30)).
a(n) = A001221(A355582(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 31/30. (End)

Extensions

Name edited by Amiram Eldar, Sep 16 2023
Showing 1-2 of 2 results.