cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A135212 a(n) = A078456(n)/A120271(n).

Original entry on oeis.org

1, 1, 2, 4, 8, 576, 1152, 2304, 4608, 18432, 552960, 59719680, 2388787200, 100329062400, 200658124800, 802632499200, 1605264998400, 288947699712000, 6356849393664000, 444979457556480000, 10679506981355520000
Offset: 1

Views

Author

Alexander Adamchuk, Nov 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ Prime[i+1]-1, {i, 1, n-1} ] ] + 1 ], {n, 1, 50} ] / Numerator[ Table[ Sum[ 1/(Prime[i]-1), {i, 1, n} ], {n, 1, 50}] ]
  • PARI
    a(n) = matdet(matrix(n-1, n-1, j, k, if (j==k, prime(j+1), 1)))/numerator(sum(k=1, n, 1/(prime(k)-1))); \\ Michel Marcus, Oct 02 2016

Formula

a(n) = A078456(n)/A120271(n).

A128646 a(n) = denominator(Sum_{k=1..n} 1/(prime(k)-1)).

Original entry on oeis.org

1, 2, 4, 12, 60, 10, 80, 720, 7920, 55440, 55440, 18480, 18480, 18480, 425040, 5525520, 160240080, 53413360, 160240080, 160240080, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800
Offset: 1

Views

Author

Alexander Adamchuk, Mar 18 2007

Keywords

Comments

A120271(n) = numerator(Sum_{k=1..n} 1/(prime(k)-1)); A128648(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)); numbers m such that a(m) = A128648(m) are listed in A128649.

Crossrefs

Cf. A120271 (numerator(Sum_{k=1..n} 1/(prime(k)-1))).
Cf. A128649, A128647, A128648 (denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).

Programs

  • Mathematica
    Table[Denominator[Sum[1/(Prime[k]-1),{k,1,n}]],{n,1,36}]

Formula

a(n) = denominator(Sum_{k=1..n} 1/(prime(k)-1)).

A078456 Number of numbers less than prime(1)*...*prime(n) having exactly one prime factor among (prime(1),...,prime(n)) where prime(n) is the n-th prime.

Original entry on oeis.org

1, 3, 14, 92, 968, 12096, 199296, 3679488, 82607616, 2349508608, 71507128320, 2604912721920, 105300128563200, 4466750187110400, 207324589680230400, 10866166392736972800, 634672612705724006400, 38337584554108256256000
Offset: 1

Views

Author

Benoit Cloitre, Dec 31 2002

Keywords

Comments

For n>1 a(n) is the determinant of the (n-1) X (n-1) matrix with elements M[i,j] = Prime[i+1] if i=j and 1 otherwise. (See example lines.) - Alexander Adamchuk, Jun 02 2006
Second column of A096294. - Eric Desbiaux, Jun 20 2013

Examples

			a(2)=3 since 2*3=6 and 2,3,4 have 1 prime factor among (2,3)
3 1 1 1 1 ...
1 5 1 1 1 ...
1 1 7 1 1 ...
1 1 1 11 1 ...
1 1 1 1 13 ...
and so a(2) = 3, a(3) = 3*5 - 1*1 = 14, a(4) = 3*5*7 + 1*1*1 + 1*1*1 - 7*1*1 - 5*1*1 - 3*1*1 = 92, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ Prime[i+1]-1, {i, 1, n-1} ] ] + 1 ], {n, 1, 20} ] (* Alexander Adamchuk, Jun 02 2006 *)
  • PARI
    a(n)=sum(k=1,prod(i=1,n, prime(i)),if(isprime(gcd(k,prod(i=1,n, prime(i)))),1,0))
    
  • PARI
    a(n) = matdet(matrix(n-1, n-1, j, k, if (j==k, prime(j+1), 1))); \\ after Mathematica; Michel Marcus, Oct 02 2016

Formula

a(n) = (prime(n)-1)*a(n-1) + A005867(n). - Matthew Vandermast, Jun 06 2004
a(n) = A120071(n) * A135212(n). - Alexander Adamchuk, Nov 23 2007
a(n) = A117494(A002110(n)). - Ridouane Oudra, Sep 18 2022

Extensions

a(7) from Ralf Stephan, Mar 25 2003
a(8)-a(12) from Matthew Vandermast, Jun 06 2004
More terms from Alexander Adamchuk, Jun 02 2006

A092063 Numbers k such that numerator of Sum_{i=1..k} 1/(prime(i)-1) is prime.

Original entry on oeis.org

2, 3, 4, 7, 8, 15, 19, 21, 22, 25, 26, 31, 34, 45, 46, 52, 65, 69, 79, 85, 89, 98, 102, 122, 137, 149, 181, 195, 210, 220, 316, 325, 340, 385, 436, 466, 497, 934, 972, 1180, 1211, 1212, 1639, 1807, 2075, 2104, 3100, 3258, 3563, 3688, 4528, 4760, 4934, 6151, 6185, 7579, 8625, 8694, 9205
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 20 2004

Keywords

Comments

Note that the definition here is subtly different from that of A092065.
Terms a(k) < 1000 correspond to primes. Beyond, numerators are probable primes. Note that A120271(3100) has 2187 digits. - M. F. Hasler, Feb 06 2008
Intersection of A000040 (the primes) and A120271 (numerators of partial sums of 1/(prime(i)-1)). - M. F. Hasler, Feb 06 2008
a(60) > 10000. - Jason Yuen, Aug 26 2024

Examples

			1/(2-1) + 1/(3-1) = 3/2 and 3 is prime so a(1)=2.
		

Crossrefs

Programs

  • Mathematica
    Position[Accumulate[1/(Prime[Range[3100]]-1)],?(PrimeQ[ Numerator[ #]]&)]//Flatten (* _Harvey P. Dale, Oct 16 2016 *)
  • PARI
    A120271(n) = numerator(sum(k=1, n, 1/(prime(k)-1)));
    for (i=1,500,if(isprime(A120271(i)),print1(i,",")));
    
  • PARI
    print_A092063( i=0 /* start testing at i+1 */)={local(s=sum(j=1,i,1/(prime(j)-1))); while(1, while(!ispseudoprime(numerator(s+=1/(prime(i++)-1))),); print1(i", "))} \\  M. F. Hasler, Feb 06 2008

Extensions

More terms from M. F. Hasler, Feb 06 2008
Edited by T. D. Noe, Oct 30 2008
Corrected by Harvey P. Dale, Oct 16 2016
a(48)-a(59) from Jason Yuen, Aug 26 2024

A128647 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).

Original entry on oeis.org

1, 1, 3, 7, 41, 3, 53, 437, 5167, 34189, 36037, 3833, 3987, 11521, 274223, 3458639, 103063291, 100392623, 34273501, 33510453, 308270747, 302107667, 12626774467, 12402802537, 25216220279, 124110148411, 2142721739387, 111888942151111
Offset: 1

Views

Author

Alexander Adamchuk, Mar 18 2007

Keywords

Comments

Numbers m such that A128648(m) = A128646(n) are listed in A128649.

Crossrefs

Cf. A128648 (denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).
Cf. A120271 (numerator(Sum_{k=1..n} 1/(prime(k)-1))).

Programs

  • Mathematica
    Table[Numerator[Sum[(-1)^(k+1)*1/(Prime[k]-1),{k,1,n}]],{n,1,36}]

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).

A128648 a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).

Original entry on oeis.org

1, 2, 4, 12, 60, 5, 80, 720, 7920, 55440, 55440, 6160, 6160, 18480, 425040, 5525520, 160240080, 160240080, 53413360, 53413360, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400
Offset: 1

Views

Author

Alexander Adamchuk, Mar 18 2007

Keywords

Comments

Numbers m such that a(m) equals A128646(m) are listed in A128649.

Crossrefs

Cf. A128647 (numerator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).
Cf. A128646 (denominator(Sum_{k=1..n} 1/(prime(k)-1))).

Programs

  • Mathematica
    Table[Denominator[Sum[(-1)^(k+1)*1/(Prime[k]-1),{k,1,n}]],{n,1,36}]

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1)).

A128649 Numbers m such that A128646(m) = A128648(m).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 539, 540, 541, 542, 543, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610
Offset: 1

Views

Author

Alexander Adamchuk, Mar 18 2007

Keywords

Comments

Terms of this sequence are 1..5, 7..11, 14..17, 21..35, 65..66, 71..77, 81..93, 539..543, 600..639, 644..650, 707..818, 1152..1185, 4502..4577, 4601..4823, 4893..5003, 7483..7633, ...

Crossrefs

Cf. A128648 (denominator(Sum_{k=1..n} (-1)^(k+1)/(prime(k)-1))).
Cf. A128646 (denominator(Sum_{k=1..n} 1/(prime(k)-1))).

Programs

  • Mathematica
    f=0;g=0;Do[p=Prime[n];f=f+1/(p-1);g=g+(-1)^(n+1)*1/(p-1);kf=Denominator[f];kg=Denominator[g];If[Equal[kf,kg],Print[n]],{n,1,10000}]

A092064 Prime numbers in A092063.

Original entry on oeis.org

2, 3, 7, 19, 31, 79, 89, 137, 149, 181, 6151
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 20 2004

Keywords

Comments

6151 corresponds to a probable prime. - Jason Yuen, Aug 25 2024

Crossrefs

Cf. A120271.

Programs

  • PARI
    A120271(n) = numerator(sum(k=1, n, 1/(prime(k)-1)));
    for (i=1,500,if(isprime(i) && isprime(A120271(i)),print1(i,",")));

Extensions

a(11) from Jason Yuen, Aug 25 2024
Showing 1-8 of 8 results.