A092064 Prime numbers in A092063.
2, 3, 7, 19, 31, 79, 89, 137, 149, 181, 6151
Offset: 1
Crossrefs
Cf. A120271.
Programs
Extensions
a(11) from Jason Yuen, Aug 25 2024
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
print_A137689(i=0/*start checking at i+1*/)={my(s=sum(j=1,i,1/(prime(j)-1))); while(1, while(!ispseudoprime(-1+denominator(s+=1/(prime(i++)-1))),);print1(i","))}
count:= 0: S:= 0: p:= 0; for n from 1 to 2500 do p:= nextprime(p); S:= S + 1/(p - n); if isprime(numer(S)) then count:= count+1; A[count]:= n; fi od: seq(A[i],i=1..count); # Robert Israel, Sep 07 2014
f=0; Do[ p=Prime[n]; f=f+1/(p-n); g=Numerator[f]; If[ PrimeQ[g], Print[n]], {n,1,500} ]
S=1;for(n=2,100,S=S+1/(prime(n)-n);if(isprime(numerator(S)),print1(n,","))) \\ Edward Jiang, Sep 08 2014
n=3 is in this sequence because A128646(n)+1 = 5 is a prime (where A128646(3) is the denominator of 1/(2-1) + 1/(3-1) + 1/(5-1) = 7/4).
print_A137691(i=0/*start checking at i+1*/)={my(s=sum(j=1,i,1/(prime(j)-1))); while(1, while(!ispseudoprime(1+denominator(s+=1/(prime(i++)-1))),);print1(i","))}
Comments