A137692 Primes of the form A128646(k)+1 for some k (listed in A137691), where A128646 = denominators of partial sums of 1/(p(i)-1).
2, 3, 5, 11, 13, 61, 18481, 55441, 53413361, 11827018732969441
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
f=0;g=0;Do[p=Prime[n];f=f+1/(p-1);g=g+(-1)^(n+1)*1/(p-1);kf=Denominator[f];kg=Denominator[g];If[Equal[kf,kg],Print[n]],{n,1,10000}]
print_A137689(i=0/*start checking at i+1*/)={my(s=sum(j=1,i,1/(prime(j)-1))); while(1, while(!ispseudoprime(-1+denominator(s+=1/(prime(i++)-1))),);print1(i","))}
n=3 is in this sequence because A128646(n)+1 = 5 is a prime (where A128646(3) is the denominator of 1/(2-1) + 1/(3-1) + 1/(5-1) = 7/4).
print_A137691(i=0/*start checking at i+1*/)={my(s=sum(j=1,i,1/(prime(j)-1))); while(1, while(!ispseudoprime(1+denominator(s+=1/(prime(i++)-1))),);print1(i","))}
R:= [seq(1/(ithprime(k)-1),k=1..40)]: S:= ListTools:-PartialSums(R): A:= map(numer,S); # Robert Israel, Jan 12 2025
Numerator[Table[Sum[1/(Prime[i]-1),{i,1,n}],{n,1,50}]] Accumulate[1/(Prime[Range[30]]-1)]//Numerator (* Harvey P. Dale, May 03 2025 *)
a(n) = numerator(sum(k=1, n, 1/(prime(k)-1))); \\ Michel Marcus, Oct 02 2016
Table[Numerator[Sum[(-1)^(k+1)*1/(Prime[k]-1),{k,1,n}]],{n,1,36}]
Table[Denominator[Sum[(-1)^(k+1)*1/(Prime[k]-1),{k,1,n}]],{n,1,36}]
Comments