cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355585 T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.

Original entry on oeis.org

0, 1, 8, -2, 27, -5, 928, -70, 16, 11249, -2671, 123, 46872, -34354, 5992, -438, 1792225, -445535, 28075, -10303, 23152256, -5824226, 1168304, -178754, 38336, 100685835, -25547957, 5343755, -885717, 101355, 3970817992, -338056246, 72962904, -12914726, 1825464, -386166
Offset: 0

Views

Author

Hugo Pfoertner, Jul 09 2022

Keywords

Comments

The distance vector (j,k) is defined in an oblique coordinate system with an angle of 120 degrees between the axes, see e.g. A307012.
Atkinson and Steenwijk (1999) (see links in A211074) provided a generalization of the method used to calculate the resistance between two arbitrary nodes in an infinite square lattice of one-ohm resistors to infinite triangular lattices. Similar to the square lattice, the integral describing the resistance distance between nodes can exactly be represented by an expression of the form given in the name of this sequence with integer coefficients. Atkinson and Steenwijk, page 489, provided results for j <= 3 found by evaluation of the integral (17) (given below) and application of Mathematica's "Simplify" function.
R(j,k) = (1/Pi) * Integral_{y=0..Pi/2} (1 - exp(-|j-k|*x)*cos((j+k)*y)) / (sinh(x)*cos(y)) dy, with x = arccosh(2/cos(y)-cos(y)).
It would be useful to know whether, since the publication cited, a recurrence analogous to that known for the square lattice (used in A355565) for determining the coefficients has also been found for the triangular lattice.
The results in this sequence were found by systematic parameter variation of u and v and continued fraction expansion of the difference from the exact value of the integral for the resistance distance to determine s/t.

Examples

			The triangle begins:
          0;
          1;
          8,        -2;
         27,        -5;
        928,       -70,      16;
      11249,     -2671,     123;
      46872,    -34354,    5992,    -438;
    1792225,   -445535,   28075,  -10303;
   23152256,  -5824226, 1168304, -178754,  38336;
  100685835, -25547957, 5343755, -885717, 101355;
. The combined triangles used to calculate the resistances are:
   \ j                0              |                 1               |
   k\---------- s/t ----------- u/v -|----------- s/t ----------- u/v -|
   0|           0/1             0/ 1 |             .               .   |
   1|           1/3             0/ 1 |             .               .   |
   2|           8/3            -2/ 1 |           -2/3             1/ 1 |
   3|          27/1           -24/ 1 |           -5/1             5/ 1 |
   4|         928/3          -280/ 1 |          -70/1            64/ 1 |
   5|       11249/3         -3400/ 1 |        -2671/3           808/ 1 |
   6|       46872/1       -212538/ 5 |       -34354/3         51929/ 5 |
   7|     1792225/3      -2708944/ 5 |      -445535/3        673429/ 5 |
   8|    23152256/3    -244962336/35 |     -5824226/3      61623224/35 |
   9|   100685835/1   -3195918288/35 |    -25547957/1     810930216/35 |
  10|  3970817992/3  -42013225014/35 |   -338056246/1    2146081719/ 7 |
  11| 52514317745/3 -111125508824/ 7 | -13481564911/3  142641647567/35 |
.
continued
   \ j             2              |               3            |
   k\-------- s/t ---------- u/v -|--------- s/t -------- u/v -|
   4|        16/1          -14/ 1 |           .            .   |
   5|       123/1         -111/ 1 |           .            .   |
   6|      5992/3        -9054/ 5 |       -438/1       1989/5  |
   7|     28075/1      -127303/ 5 |     -10303/3      15576/5  |
   8|   1168304/3    -12361214/35 |    -178754/3    1891328/35 |
   9|   5343755/1   -169618717/35 |    -885717/1   28113999/35 |
  10|  72962904/1  -2315951182/35 |  -12914726/1   81986531/ 7 |
  11| 993810715/1 -31545031729/35 | -184858117/1 5867671888/35 |
.
continued
   \ j           4             |             5           |
   k\------- s/t -------- u/v -|------- s/t ------- u/v -|
   8|    38336/3    -405592/35 |         .           .   |
   9|   101355/1   -3217136/35 |         .           .   |
  10|  1825464/1  -57942922/35 |  -386166/1  12257507/35 |
  11| 28123355/1 -892677136/35 | -3085317/1  97932579/35 |
.
Using the terms for (j,k) = (10,5) with {s, t, u, v} = {-386166, 1, 12257507, 35} the resistance is R = T(10,5)/A355586(10,5) + (2*sqrt(3)/Pi) * A355587(10,5)/A355588(10,5) = -386166/1 + (2*sqrt(3)/Pi)*12257507/35 = 0.731139136228538824636... . This equals the integral for the resistance distance R(j,k) after substitution of j=10 and k=5.
		

References

  • See A211074 for more references and links (with alternatives).

Crossrefs

A355586 are the corresponding denominators t.
A355587 and A355588 are u and v.
Cf. A307012 (discussion of oblique coordinate system).
Cf. A084768 (when divided by 3 apparently gives the difference between successive values of s/t in column 0).
Cf. A355565, A355566, A355567 (similar problem for the square lattice).

Programs

  • PARI
    Rtri(n,p)={my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
    searchr (target, maxn=1000000, maxd=10, maxrat=1000, minn=0, mind=1) = {my (Rcons=2*sqrt(3)/Pi, delta=oo); for (d=mind, maxd, my(PP=Rcons/d); for (nn=minn, maxn, foreach ([-nn,nn], n, my (P=PP*n, T=target-P, Q = bestappr(T,maxrat), D=abs(target-P-Q)); if(D
    				
  • PARI
    \\ Alternative method using a recurrence; calculates triangle of s/t
    jk(j,k) = {my(jj=j,kk=k); if(k<1,jj=j-k+1;kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]};
    D(n) = subst(pollegendre(n), 'x, 7);
    ST(nend) = {my(nmax=nend+1, N=matrix(nmax,(nmax+1)\2)); for (n=2, nmax, N[n,1]=(1/3) * sum(k=0,n-2,D(k))); for (n=3, nmax, N[n,2] = (1/2)*(6*N[n-1,1] - 2*N[jk(n-1,2)[1],jk(n-1,2)[2]] - N[n-2,1] - N[n,1])); for (n=5, nmax, for (m=3, (n+1)\2, N[n,m] = 6*N[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - N[jk(n-1,m)[1],jk(n-1,m)[2]] - N[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - N[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - N[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - N[jk(n,m-1)[1],jk(n,m-1)[2]] )); N};
    ST(11)

Formula

T(n,0)/A355586(n,0) = T(n-1,0)/A355586(n-1,0) + A084768(n-1)/3 for n>=1 (conjectured).