A355587 T(j,k) are the numerators u in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.
0, 0, -2, 1, -24, 5, -280, 64, -14, -3400, 808, -111, -212538, 51929, -9054, 1989, -2708944, 673429, -127303, 15576, -244962336, 61623224, -12361214, 1891328, -405592, -3195918288, 810930216, -169618717, 28113999, -3217136, -42013225014, 2146081719, -2315951182, 81986531, -57942922, 12257507
Offset: 0
Examples
The triangle begins: 0; 0; -2, 1; -24, 5; -280, 64, -14; -3400, 808, -111; -212538, 51929, -9054, 1989; -2708944, 673429, -127303, 15576; -244962336, 61623224, -12361214, 1891328, -405592; -3195918288, 810930216, -169618717, 28113999, -3217136;
Links
- R. J. Mathar, Recurrence for the Atkinson-Steenwijk Integrals for Resistors in the Infinite Triangular Lattice, viXra:2208.0111 (2022).
Programs
-
PARI
Rtri(n, p) = {my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi}; jk(j,k) = {my(jj=j,kk=k); if(k<1, jj=j-k+1; kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj,kk]}; D(n) = subst(pollegendre(n), 'x, 7); uv(k) = (Rtri(k,0) - sum(j=0, k-1, D(j))/3) / (2*sqrt(3)/Pi); poddpri(primax) = {my(pp=1,p=2); while (p<=primax, p=nextprime(p+1); pp*=p); pp}; UV(nend) = { my(nmax=nend+1,M=matrix(nmax,(nmax+1)\2)); for (n=3, nmax, M[n,1] = bestappr(uv(n-1),poddpri(n-1))); for (n=3, nmax, M[n,2]=(1/2)*(6*M[n-1,1] - 2*M[jk(n-1,2)[1],jk(n-1,2)[2]] - M[n-2,1] - M[n,1])); for (n=5, nmax, for (m=3,(n+1)\2, M[n,m] = 6*M[jk(n-1,m-1)[1],jk(n-1,m-1)[2]] - M[jk(n-1,m)[1],jk(n-1,m)[2]] - M[jk(n-2,m-1)[1],jk(n-2,m-1)[2]] - M[jk(n-2,m-2)[1],jk(n-2,m-2)[2]] - M[jk(n-1,m-2)[1],jk(n-1,m-2)[2]] - M[jk(n,m-1)[1],jk(n,m-1)[2]] )); M}; UV(11)
Comments