cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355607 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. (1 + x)^(x^k).

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, -3, 0, 1, 0, 0, 6, 20, 0, 1, 0, 0, 0, -12, -90, 0, 1, 0, 0, 0, 24, 40, 594, 0, 1, 0, 0, 0, 0, -60, 180, -4200, 0, 1, 0, 0, 0, 0, 120, 240, -1512, 34544, 0, 1, 0, 0, 0, 0, 0, -360, -1260, 11760, -316008, 0, 1, 0, 0, 0, 0, 0, 720, 1680, 28224, -38880, 3207240, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2022

Keywords

Examples

			Square array begins:
  1,   1,   1,   1,    1,   1, 1, ...
  1,   0,   0,   0,    0,   0, 0, ...
  0,   2,   0,   0,    0,   0, 0, ...
  0,  -3,   6,   0,    0,   0, 0, ...
  0,  20, -12,  24,    0,   0, 0, ...
  0, -90,  40, -60,  120,   0, 0, ...
  0, 594, 180, 240, -360, 720, 0, ...
		

Crossrefs

Columns k=1..4 give A007113, A007121, (-1)^n * A353229(n), A354625.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 1)/(n-k*j)!);

Formula

T(0,k) = 1 and T(n,k) = -(n-1)! * Sum_{j=k+1..n} (-1)^(j-k) * j/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling1(n-k*j,j)/(n-k*j)!.

A355610 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. (1 - x)^(-x^k/k!).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 2, 6, 1, 0, 0, 3, 24, 1, 0, 0, 3, 20, 120, 1, 0, 0, 0, 6, 90, 720, 1, 0, 0, 0, 4, 20, 594, 5040, 1, 0, 0, 0, 0, 10, 180, 4200, 40320, 1, 0, 0, 0, 0, 5, 40, 1134, 34544, 362880, 1, 0, 0, 0, 0, 0, 15, 210, 7980, 316008, 3628800, 1, 0, 0, 0, 0, 0, 6, 70, 1904, 71280, 3207240, 39916800
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2022

Keywords

Examples

			Square array begins:
    1,   1,   1,  1,  1, 1, 1, ...
    1,   0,   0,  0,  0, 0, 0, ...
    2,   2,   0,  0,  0, 0, 0, ...
    6,   3,   3,  0,  0, 0, 0, ...
   24,  20,   6,  4,  0, 0, 0, ...
  120,  90,  20, 10,  5, 0, 0, ...
  720, 594, 180, 40, 15, 6, 0, ...
		

Crossrefs

Columns k=0..4 give A000142, A066166, A351492, A351493, A355507.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), abs(stirling(n-k*j, j, 1))/(k!^j*(n-k*j)!));

Formula

T(0,k) = 1 and T(n,k) = (n-1)!/k! * Sum_{j=k+1..n} j/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} |Stirling1(n-k*j,j)|/(k!^j * (n-k*j)!).

A354624 Expansion of e.g.f. (1 - x)^(-x^4).

Original entry on oeis.org

1, 0, 0, 0, 0, 120, 360, 1680, 10080, 72576, 2419200, 25660800, 279417600, 3286483200, 41894012160, 794511244800, 13755488947200, 238514695372800, 4269265386946560, 79696849513881600, 1658065431859200000
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2022

Keywords

Crossrefs

Column k=4 of A355609.
Cf. A354625.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^4)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^4*log(1-x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=5, i, j/(j-4)*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\5, abs(stirling(n-4*k, k, 1))/(n-4*k)!);

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=5..n} k/(k-4) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/5)} |Stirling1(n-4*k,k)|/(n-4*k)!.
a(n) ~ n! * (1 - 4/n - 16*log(n)/n^2). - Vaclav Kotesovec, Jul 21 2022

A355665 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + x^k * log(1 - x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 3, 1, 0, 2, 14, 1, 0, 0, 3, 88, 1, 0, 0, 6, 32, 694, 1, 0, 0, 0, 12, 150, 6578, 1, 0, 0, 0, 24, 40, 1524, 72792, 1, 0, 0, 0, 0, 60, 900, 12600, 920904, 1, 0, 0, 0, 0, 120, 240, 6048, 147328, 13109088, 1, 0, 0, 0, 0, 0, 360, 1260, 43680, 1705536, 207360912
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2022

Keywords

Examples

			Square array begins:
     1,    1,   1,   1,   1,   1, 1, ...
     1,    0,   0,   0,   0,   0, 0, ...
     3,    2,   0,   0,   0,   0, 0, ...
    14,    3,   6,   0,   0,   0, 0, ...
    88,   32,  12,  24,   0,   0, 0, ...
   694,  150,  40,  60, 120,   0, 0, ...
  6578, 1524, 900, 240, 360, 720, 0, ...
		

Crossrefs

Columns k=0..3 give A007840, A052830, A351503, A351504.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(n-k*j)!);

Formula

T(0,k) = 1 and T(n,k) = n! * Sum_{j=k+1..n} 1/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * |Stirling1(n-k*j,j)|/(n-k*j)!.
Showing 1-4 of 4 results.