A355633 a(n) is the sum of the divisors of n whose binary expansions appear as substrings in the binary expansion of n.
1, 3, 4, 7, 6, 12, 8, 15, 10, 18, 12, 28, 14, 24, 19, 31, 18, 30, 20, 42, 22, 36, 24, 60, 26, 42, 31, 56, 30, 57, 32, 63, 34, 54, 36, 70, 38, 60, 43, 90, 42, 66, 44, 84, 54, 72, 48, 124, 50, 78, 55, 98, 54, 93, 72, 120, 61, 90, 60, 133, 62, 96, 74, 127, 66
Offset: 1
Examples
For n = 84: - the binary expansion of 84 is "1010100", - we have the following divisors: d bin(d) in bin(84)? -- ------- ----------- 1 1 Yes 2 10 Yes 3 11 No 4 100 Yes 6 110 No 7 111 No 12 1100 No 14 1110 No 21 10101 Yes 28 11100 No 42 101010 Yes 84 1010100 Yes - so a(84) = 1 + 2 + 4 + 21 + 42 + 84 = 154.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored scatterplot of the first 100000 terms (the color is function of the 2-adic valuation of n)
- Index entries for sequences related to binary expansion of n
- Index entries for sequences related to divisors
Programs
-
Mathematica
a[n_] := DivisorSum[n, # &, StringContainsQ @@ IntegerString[{n, #}, 2] &]; Array[a, 100] (* Amiram Eldar, Jul 16 2022 *)
-
PARI
a(n, base=2) = { my (d=digits(n, base), s=setbinop((i, j) -> fromdigits(d[i..j], base), [1..#d]), v=0); for (k=1, #s, if (s[k] && n%s[k]==0, v+=s[k])); return (v) }
-
Python
from sympy import divisors def a(n): s = bin(n)[2:] return sum(d for d in divisors(n, generator=True) if bin(d)[2:] in s) print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Jul 11 2022
Formula
a(n) <= A000203(n).
a(2^n) = 2^(n+1) - 1 for any n >= 0.