A355638 Number of polyhedra (3-polytopes) of graph radius 1 on n edges.
1, 0, 1, 1, 1, 1, 2, 2, 4, 5, 7, 10, 16, 27, 42, 67, 116, 187, 329, 570, 970, 1723, 3021, 5338, 9563, 16981, 30517, 54913, 98847, 179119, 324333, 589059, 1072997, 1955207, 3573129, 6538088
Offset: 6
Examples
For n=6 there is only the tetrahedron, n=8 the square pyramid, n=9 the triangular bipyramid,...
Links
- R. W. Maffucci, On unigraphic 3-polytopes of radius one, arXiv:2207.02040 [math.CO], 2022.
Crossrefs
Cf. A002840.
Programs
-
Mathematica
Needs["IGraphM`"] ra[8]:={Square pyramid} ra[q]=opb[ra[q-1]] opb[setg_] := Prepend[DeleteDuplicatesBy[ Flatten[Table[ EdgeAdd[g, UndirectedEdge[x[[1]], x[[2]]], GraphLayout -> "TutteEmbedding"], {g, setg}, {x, Flatten[Table[ Complement[Subsets[i, {2}], Table[{i[[j]], i[[j + 1]]}, {j, Length[i] - 1}], {{i[[1]], i[[-1]]}}], {i, Select[IGFaces[g], Length[#] > 3 &]}], 1]}]], CanonicalGraph], If[OddQ[EdgeCount[setg[[1]]]], WheelGraph[EdgeCount[setg[[1]]]/2 + 3/2, GraphLayout -> "TutteEmbedding", ImageSize -> 25], Nothing]]
Comments