cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355644 Primes p such that p^2-1 does not have a divisor d with d + (p^2-1)/d prime.

Original entry on oeis.org

2, 3, 467, 487, 787, 887, 1279, 2063, 2557, 2657, 2903, 3323, 3413, 3547, 3583, 4273, 4373, 4517, 4567, 4801, 5233, 5393, 5443, 6047, 6823, 6911, 7507, 9133, 9137, 9721, 9973, 10103, 10313, 10937, 12227, 12763, 13183, 13627, 14407, 15073, 15083, 15187, 15359, 15787, 16903, 17047, 17911, 18013, 18587
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jul 11 2022

Keywords

Comments

Primes p such that p^2-1 is not in A355643.

Examples

			a(2) = 3 is a term because it is prime, the divisors of 3^2-1 = 8 are 1, 2, 4 and 8, and none of 1+8/1 = 9, 2+8/2 = 6, 4+8/4 = 6, 8+8/8 = 9 are prime.
		

Crossrefs

Cf. A355643.

Programs

  • Maple
    filter:= proc(p) local n,F,t;
        n:= p^2-1;
      F:= select(t -> t^2 <=n, numtheory:-divisors(n));
      not ormap(isprime, map(t -> t+n/t, F))
    end proc:
    select(filter, [seq(ithprime(i),i=1..3000)]);
  • Mathematica
    q[n_] := AllTrue[Divisors[n], !PrimeQ[# + n/#] &]; Select[Prime[Range[2000]], q[#^2 - 1] &] (* Amiram Eldar, Jul 11 2022 *)
  • PARI
    isok(p) = isprime(p) && fordiv(p^2-1, d, if (isprime(d + (p^2-1)/d), return(0))); return(1); \\ Michel Marcus, Jul 11 2022
    
  • Python
    from sympy import divisors, isprime
    def ok(n):
        if not isprime(n): return False
        t = n**2 - 1
        return not any(isprime(d+t//d) for d in divisors(t, generator=True))
    print([k for k in range(19000) if ok(k)]) # Michael S. Branicky, Jul 11 2022