A355661 Largest number of children of any vertex in the rooted tree with Matula-Goebel number n.
0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 1, 5, 2, 2, 2, 4, 3, 3, 2, 4, 2, 3, 2, 3, 3, 2, 2, 5, 2, 3, 2, 3, 4, 4, 2, 4, 3, 2, 2, 4, 3, 2, 3, 6, 2, 3, 3, 3, 2, 3, 3, 5, 2, 3, 3, 3, 2, 3, 2, 5, 4, 2, 2, 4, 2, 2, 2
Offset: 1
Keywords
Examples
For n=629, tree 629 is as follows and vertex 12 has 3 children which is the most of any vertex so that a(629) = 3. 629 root / \ 7 12 tree n=629 and its | /|\ subtree numbers 4 1 1 2 / \ | 1 1 1
Links
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; uses numtheory; max(bigomega(n), map(p-> a(pi(p)), factorset(n))[]) end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 14 2022
-
Mathematica
nn = 105; a[1] = 0; a[2] = 1; Do[a[n] = Max@ Append[Map[a[PrimePi[#]] &, FactorInteger[n][[All, 1]]], PrimeOmega[n]], {n, 3, nn}]; Array[a, nn] (* Michael De Vlieger, Jul 14 2022 *)
-
PARI
a(n) = my(f=factor(n)); vecmax(concat(vecsum(f[,2]), [self()(primepi(p)) |p<-f[,1]]));
Formula
a(n) = max(bigomega(n), {a(primepi(p)) | p prime factor of n}).
a(n) = Max_{s in row n of A354322} bigomega(s).
Comments