cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355664 Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) * p(k)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 9, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 35, 15, 35, 5, 0, 0, 6, 38, 48, 48, 38, 6, 0, 0, 7, 49, 51, 271, 51, 49, 7, 0, 0, 8, 56, 60, 284, 284, 60, 56, 8, 0, 0, 9, 135, 63, 387, 313, 387, 63, 135, 9, 0, 0, 10, 142, 192, 448, 398, 398, 448, 192, 142, 10, 0
Offset: 0

Views

Author

Rémy Sigrist, Jul 13 2022

Keywords

Comments

In other words, A(n, k) encodes the product of the polynomials encoded by n and k.

Examples

			Array A(n, k) begins:
  n\k|  0   1    2    3     4     5     6     7      8      9     10     11
  ---+---------------------------------------------------------------------
    0|  0   0    0    0     0     0     0     0      0      0      0      0
    1|  0   1    2    3     4     5     6     7      8      9     10     11
    2|  0   2    9   12    35    38    49    56    135    142    153    156
    3|  0   3   12   15    48    51    60    63    192    195    204    207
    4|  0   4   35   48   271   284   387   448   2111   2172   2275   2288
    5|  0   5   38   51   284   313   398   455   2168   2289   2502   2531
    6|  0   6   49   60   387   398   481   504   3079   3102   3185   3196
    7|  0   7   56   63   448   455   504   511   3584   3591   3640   3647
    8|  0   8  135  192  2111  2168  3079  3584  33279  33784  34695  34752
    9|  0   9  142  195  2172  2289  3102  3591  33784  34785  36622  36739
   10|  0  10  153  204  2275  2502  3185  3640  34695  36622  39993  40476
   11|  0  11  156  207  2288  2531  3196  3647  34752  36739  40476  40719
   12|  0  12  195  240  3087  3132  3843  4032  49215  49404  50115  50160
		

Crossrefs

Programs

  • PARI
    toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
    fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
    A(n,k) = { fromruns(Vec(Pol(toruns(n)) * Pol(toruns(k)))) }

Formula

A(n, k) = A(k, n).
A(n, 0) = 0.
A(n, 1) = n.
A(n, 3) = A001196(n).
A(n, 7) = A097254(n+1).
A(n, n) = A355654(n).