cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355693 Dirichlet inverse of A330749, gcd(n, A064989(n)), where A064989 shifts the prime factorization one step towards lower primes.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, 1, -1, 0, -1, 1, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, 0, -1, 0, 1, 1, -3, -2, -1, 1, 1, 0, -1, 0, -1, 0, 2, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 3, -1, 1, -1, 1, 2, 0, -5, 0, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, 3, 1, 0, 1, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2022

Keywords

Crossrefs

Cf. also A354365, A354366.

Programs

  • PARI
    A330749(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); gcd(n, factorback(f)); };
    memoA355693 = Map();
    A355693(n) = if(1==n,1,my(v); if(mapisdefined(memoA355693,n,&v), v, v = -sumdiv(n,d,if(dA330749(n/d)*A355693(d),0)); mapput(memoA355693,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA330749(n/d) * a(d).