cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355698 a(n) is the number of repdigits divisors of n (A010785).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Bernard Schott, Jul 14 2022

Keywords

Comments

More than the usual number of terms are displayed in order to show the difference from A087990.
The first 100 terms are the same first 100 terms of A087990, then a(101) = 1 while A087990(101) = 2, because 101 is the smallest palindrome that is not repdigit; the next difference is 121.
Inequalities: 1 <= a(n) <= A087990(n).

Examples

			66 has 8 divisors: {1, 2, 3, 6, 11, 22, 33, 66} that are all repdigits, hence a(66) = 8.
121 has 3 divisors: {1, 11, 121} of which 2 are repdigits: {1, 11}, hence a(121) = 2.
		

Crossrefs

Programs

  • Maple
    isrepdig:= proc(n) nops(convert(convert(n,base,10),set))=1 end proc:
    f:= proc(n) nops(select(isrepdig, numtheory:-divisors(n))) end proc:
    map(f, [$1..200]); # Robert Israel, Aug 07 2024
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Length[Union[IntegerDigits[#]]] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 14 2022 *)
  • PARI
    a(n) = my(ret=0,u=1); while(u<=n, ret+=sum(d=1,9, n%(u*d)==0); u=10*u+1); ret; \\ Kevin Ryde, Jul 14 2022
    
  • PARI
    isrep(n) = {1==#Set(digits(n))}; \\ A010785
    a(n) = sumdiv(n, d, isrep(d)); \\ Michel Marcus, Jul 15 2022
  • Python
    from sympy import divisors
    def c(n): return len(set(str(n))) == 1
    def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 14 2022
    

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (7129/2520) * A065444 = 3.11446261209177581335... . - Amiram Eldar, Apr 17 2025