A355698 a(n) is the number of repdigits divisors of n (A010785).
1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 2, 5, 1, 3, 3, 4, 1, 5, 1, 4, 3, 4, 1, 6, 2, 2, 3, 4, 1, 5, 1, 4, 4, 2, 3, 6, 1, 2, 2, 5, 1, 5, 1, 6, 4, 2, 1, 6, 2, 3, 2, 3, 1, 5, 4, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 8, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 4, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 8, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 6, 4, 1, 4, 1, 4, 4
Offset: 1
Examples
66 has 8 divisors: {1, 2, 3, 6, 11, 22, 33, 66} that are all repdigits, hence a(66) = 8. 121 has 3 divisors: {1, 11, 121} of which 2 are repdigits: {1, 11}, hence a(121) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
isrepdig:= proc(n) nops(convert(convert(n,base,10),set))=1 end proc: f:= proc(n) nops(select(isrepdig, numtheory:-divisors(n))) end proc: map(f, [$1..200]); # Robert Israel, Aug 07 2024
-
Mathematica
a[n_] := DivisorSum[n, 1 &, Length[Union[IntegerDigits[#]]] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 14 2022 *)
-
PARI
a(n) = my(ret=0,u=1); while(u<=n, ret+=sum(d=1,9, n%(u*d)==0); u=10*u+1); ret; \\ Kevin Ryde, Jul 14 2022
-
PARI
isrep(n) = {1==#Set(digits(n))}; \\ A010785 a(n) = sumdiv(n, d, isrep(d)); \\ Michel Marcus, Jul 15 2022
-
Python
from sympy import divisors def c(n): return len(set(str(n))) == 1 def a(n): return sum(1 for d in divisors(n, generator=True) if c(d)) print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Jul 14 2022
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (7129/2520) * A065444 = 3.11446261209177581335... . - Amiram Eldar, Apr 17 2025
Comments