cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355721 Square table, read by antidiagonals: the g.f. for row n is given recursively by (2*n-1)*x*R(n,x) = 1 + (2*n-3)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112934(k+1)*x^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 10, 26, 1, 2, 14, 74, 158, 1, 2, 18, 138, 706, 1282, 1, 2, 22, 218, 1686, 8162, 13158, 1, 2, 26, 314, 3194, 24162, 110410, 163354, 1, 2, 30, 426, 5326, 53890, 394254, 1708394, 2374078, 1, 2, 34, 554, 8178, 102722, 1019250, 7191018, 29752066, 39456386
Offset: 0

Views

Author

Peter Bala, Jul 15 2022

Keywords

Comments

Compare with A111528, which has a similar definition.

Examples

			Square array begins
1, 2,  6,  26,   158,    1282,   13158,    163354,    2374078,     39456386, ...
1, 2, 10,  74,   706,    8162,  110410,   1708394,   29752066,    576037442, ...
1, 2, 14, 138,  1686,   24162,  394254,   7191018,  144786006,   3188449602, ...
1, 2, 18, 218,  3194,   53890, 1019250,  21256090,  483426010,  11895873410, ...
1, 2, 22, 314,  5326,  102722, 2197558,  51355514, 1297759918,  35208930050, ...
1, 2, 26, 426,  8178,  176802, 4206618, 108577674, 3011332338,  89141101506, ...
1, 2, 30, 554, 11846,  283042, 7396830, 208569034, 6288011206, 201404591042, ...
...
		

Crossrefs

Cf. A112934 (row 0), A000698 (row 1), A355722 (row 2), A355723 (row 3), A355724 (row 4), A355725 (row 5). Cf. A001147, A111528.

Programs

  • Maple
    T := (n,k) -> coeff(series(hypergeom([n+1/2, 1], [], 2*x)/ hypergeom([n-1/2, 1], [], 2*x), x, 21), x, k):
    # display as a sequence
    seq(seq(T(n-k,k), k = 0..n), n = 0..10);
    # display as a square array
    seq(print(seq(T(n,k), k = 0..10)), n = 0..10);

Formula

Let d(n) = Product_{k = 1..n} 2*k-1 = A001147(n) denote the double factorial of odd numbers.
O.g.f. for row n: R(n,x) = ( Sum_{k >= 0} d(n+k)/d(n)*x^k )/( Sum_{k >= 0} d(n-1+k)/d(n-1)*x^k ).
R(n,x)/(1 - (2*n-1)*x*R(n,x)) = Sum_{k >= 0} d(n+k)/d(n)*x^k.
R(n,x) = 1/(1 + (2*n-1)*x - (2*n+1)*x/(1 + (2*n+1)*x - (2*n+3)*x/(1 + (2*n+3)*x - (2*n+5)*x/(1 + (2*n+5)*x - ... )))).
R(n,x) satisfies the Riccati differential equation 2*x^2*d/dx(R(n,x)) + (2*n-1)*x*R(n,x)^2 - (1 + (2*n-3)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - (2*n+1)*x/(1 - 4*x/(1 - (2*n+3)*x/(1 - 6*x/(1 - (2*n+5)*x/(1 - ... - 2*m*x/(1 - (2*n+2*m-1)*x/(1 - ... ))))))))), a continued fraction of Stieltjes type.
Row 0: A112934(n+1); Row 1; A000698(n+1).