A355734 Least k such that there are exactly n multisets that can be obtained by choosing a divisor of each prime index of k.
1, 3, 7, 13, 21, 35, 39, 89, 133, 105, 91, 195, 351, 285, 247, 333, 273, 481, 455, 555, 623, 801, 791, 741, 1359, 1157, 1281, 1335, 1365, 1443, 1977, 1729, 1967, 1869, 2109, 3185, 2373, 2769, 2639, 4361, 3367, 3653, 3885, 3471, 4613, 5883, 5187, 5551, 6327
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 3: {2} 7: {4} 13: {6} 21: {2,4} 35: {3,4} 39: {2,6} 89: {24} 133: {4,8} 105: {2,3,4} 91: {4,6} 195: {2,3,6} 351: {2,2,2,6} For example, the choices for a(12) = 195 are: {1,1,1} {1,2,2} {1,3,6} {1,1,2} {1,2,3} {2,2,3} {1,1,3} {1,2,6} {2,3,3} {1,1,6} {1,3,3} {2,3,6}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; az=Table[Length[Union[Sort/@Tuples[Divisors/@primeMS[n]]]],{n,1000}]; Table[Position[az,k][[1,1]],{k,mnrm[az]}]
Comments