cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355738 Least k such that there are exactly n ways to choose a sequence of divisors, one of each prime index of k (with multiplicity), such that the result has no common divisor > 1.

Original entry on oeis.org

1, 2, 6, 9, 15, 49, 35, 27, 45, 98, 63, 105, 171, 117, 81, 135, 245, 343, 273, 549, 189, 1083, 315, 5618, 741, 686, 507, 513, 351, 243, 405, 7467, 6419, 5575, 735, 6859, 1813, 3231, 1183, 1197, 3537, 819, 1647, 567, 945, 2197, 8397, 3211, 1715, 3249, 3367
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355737.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
     6: {1,2}
     9: {2,2}
    15: {2,3}
    49: {4,4}
    35: {3,4}
    27: {2,2,2}
    45: {2,2,3}
    98: {1,4,4}
    63: {2,2,4}
   105: {2,3,4}
   171: {2,2,8}
   117: {2,2,6}
    81: {2,2,2,2}
   135: {2,2,2,3}
For example, the choices for a(12) = 105 are:
  (1,1,1)  (1,3,2)  (2,1,4)
  (1,1,2)  (1,3,4)  (2,3,1)
  (1,1,4)  (2,1,1)  (2,3,2)
  (1,3,1)  (2,1,2)  (2,3,4)
		

Crossrefs

Not requiring coprimality gives A355732, firsts of A355731.
Positions of first appearances in A355737.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],GCD@@#==1&]],{n,100}];
    Table[Position[az+1,k][[1,1]],{k,mnrm[az+1]}]