cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355743 Numbers whose prime indices are all prime-powers.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25, 27, 31, 33, 35, 41, 45, 49, 51, 53, 55, 57, 59, 63, 67, 69, 75, 77, 81, 83, 85, 93, 95, 97, 99, 103, 105, 109, 115, 119, 121, 123, 125, 127, 131, 133, 135, 147, 153, 155, 157, 159, 161, 165, 171, 175, 177, 179, 187
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions into constant multisets, where the multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  31: {11}
  33: {2,5}
  35: {3,4}
  41: {13}
  45: {2,2,3}
		

Crossrefs

The multiplicative version is A000688, strict A050361, coprime A354911.
The case of only primes (not all prime-powers) is A076610, strict A302590.
Allowing prime index 1 gives A302492.
These are the products of elements of A302493.
Requiring n to be a prime-power gives A302601.
These are the positions of 1's in A355741.
The squarefree case is A356065.
The complement is A356066.
A001222 counts prime-power divisors.
A023894 counts ptns into prime-powers, strict A054685, with 1's A023893.
A034699 gives maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@PrimePowerQ/@primeMS[#]&]