cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355758 Irregular triangle read by rows in which row n lists the divisors of n that are Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 3, 1, 1, 2, 8, 1, 3, 1, 2, 5, 1, 1, 2, 3, 1, 13, 1, 2, 1, 3, 5, 1, 2, 8, 1, 1, 2, 3, 1, 1, 2, 5, 1, 3, 21, 1, 2, 1, 1, 2, 3, 8, 1, 5, 1, 2, 13, 1, 3, 1, 2, 1, 1, 2, 3, 5, 1, 1, 2, 8, 1, 3, 1, 2, 34, 1, 5, 1, 2, 3, 1, 1, 2, 1, 3, 13, 1, 2, 5, 8
Offset: 1

Views

Author

Michel Marcus, Jul 16 2022

Keywords

Examples

			Irregular triangle begins:
  1;
  1, 2;
  1, 3;
  1, 2;
  1, 5;
  1, 2, 3;
  1;
  1, 2, 8;
  1, 3;
  1, 2, 5;
  ...
		

Crossrefs

Cf. A000012 (left border), A054494 (right border).
Cf. A005086 (row lengths), A005092 (row sums).
Subsequence of A027750.

Programs

  • Mathematica
    With[{fib = Fibonacci[Range[2, 10]]}, row[n_] := Select[Divisors[n], MemberQ[fib, #] &]; Table[row[n], {n, 1, fib[[-1]]}] // Flatten] (* Amiram Eldar, Jul 16 2022 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); \\ A010056
    row(n) = select(isfib, divisors(n));