cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355759 Sums of the first ceiling((n+1)/2) entries on the diagonals of a square spiral with a starting value of 1 in the center, where the diagonal and the antidiagonal are used alternately.

Original entry on oeis.org

1, 4, 6, 11, 15, 24, 32, 45, 57, 76, 94, 119, 143, 176, 208, 249, 289, 340, 390, 451, 511, 584, 656, 741, 825, 924, 1022, 1135, 1247, 1376, 1504, 1649, 1793, 1956, 2118, 2299, 2479, 2680, 2880, 3101, 3321, 3564, 3806, 4071, 4335, 4624, 4912, 5225, 5537, 5876, 6214, 6579, 6943
Offset: 1

Views

Author

Karl-Heinz Hofmann, Aug 14 2022

Keywords

Examples

			See the PDF in links.
		

Crossrefs

Cf. A006527 and A208995 (bisections, see formulas).

Programs

  • Mathematica
    CoefficientList[Series[-(x^7 - 2*x^6 + x^4 - x^3 + 2*x^2 - 2*x - 1)/((x - 1)^4*(x + 1)^2*(x^2 + 1)), {x, 0, 50}], x] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = (n^2 + 6*n + if(n%2,17,20))*n \ 24 + (n%4!=1); \\ Kevin Ryde, Aug 19 2022
  • Python
    def A355759(n):  # polynomial way.
        if   n % 2 == 0: return((24 + 20*n + 6*n**2 + n**3)//24)
        elif n % 4 == 3: return((12 + 17*n + 6*n**2 + n**3)//24)
        elif n % 4 == 1: return((     17*n + 6*n**2 + n**3)//24)
    

Formula

G.f.: -(x^7 - 2*x^6 + x^4 - x^3 + 2*x^2 - 2*x-1)/((x - 1)^4 * (x + 1)^2 * (x^2 +1)).
a(n) = (24 + 20*n + 6*n^2 + n^3) / 24 for n even.
a(n) = (12 + 17*n + 6*n^2 + n^3) / 24 for n odd and n (mod 4) == 3.
a(n) = (17*n + 6*n^2 + n^3) / 24 for n odd and n (mod 4) == 1.
a(2*n) = A006527(n+1).
a(2*n-1) = A208995(n) - 1.
E.g.f.: ((30 + 45*x + 12*x^2 + x^3)*cosh(x) + (51 + 42*x + 12*x^2 + x^3)*sinh(x) - 6*cos(x))/24. - Stefano Spezia, Aug 19 2022