cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355843 E.g.f. satisfies log(A(x)) = x * (exp(x) - 1) * A(x).

Original entry on oeis.org

1, 0, 2, 3, 40, 185, 2556, 22057, 349616, 4519377, 83642860, 1439639201, 31015493928, 663158322697, 16468280168900, 418772642545545, 11847925722273376, 348085509493265825, 11091199095506163420, 368912674236287743633, 13099432280183074041560
Offset: 0

Views

Author

Seiichi Manyama, Jul 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = Exp[x*(Exp[x] - 1)*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x*(1-exp(x))))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (k+1)^(k-1)*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, Aug 28 2022

Formula

E.g.f.: exp( -LambertW(x * (1 - exp(x))) ).
E.g.f.: LambertW(x * (1 - exp(x))) / (x * (1 - exp(x))).
a(n) ~ sqrt(1 + exp(1+r)*r^2) * n^(n-1) / (exp(n-1) * r^n), where r = 0.528399250336668412340528181936966763473482889289226687323... is the root of the equation exp(1+r) - exp(1) = 1/r. - Vaclav Kotesovec, Jul 21 2022
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) * Stirling2(n-k,k)/(n-k)!. - Seiichi Manyama, Aug 28 2022

A355788 E.g.f. satisfies log(A(x)) = (exp(2*x) - 1) * A(x)/2.

Original entry on oeis.org

1, 1, 5, 38, 409, 5772, 101227, 2126966, 52153185, 1462998168, 46232500275, 1625693415898, 62972266884721, 2664713395180228, 122315552809623323, 6053803331878334590, 321389617069279569345, 18218906261462603910704, 1098415656103838009681123
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw((1-exp(2*x))/2))))
    
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(k+1)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: exp( -LambertW((1 - exp(2*x))/2) ).
a(n) = Sum_{k=0..n} 2^(n-k) * (k+1)^(k-1) * Stirling2(n,k).
From Vaclav Kotesovec, Jul 18 2022: (Start)
E.g.f.: 2*LambertW((1 - exp(2*x))/2) / (1 - exp(2*x)).
a(n) ~ 2^(n - 1/2) * sqrt(exp(1) + 2) * n^(n-1) / (exp(n-1) * (log(exp(1) + 2) - 1)^(n - 1/2)). (End)
Showing 1-2 of 2 results.