cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355793 Square table, read by antidiagonals: the g.f. for row n is given recursively by (3*n-1)*x*R(n,x) = 1 + (3*n-4)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112936(k+1)*x^k.

Original entry on oeis.org

1, 1, 3, 1, 3, 15, 1, 3, 24, 111, 1, 3, 33, 282, 1131, 1, 3, 42, 507, 4236, 14943, 1, 3, 51, 786, 9609, 76548, 243915, 1, 3, 60, 1119, 17736, 212835, 1608864, 4742391, 1, 3, 69, 1506, 29103, 459768, 5350785, 38488152, 106912131, 1, 3, 78, 1947, 44196, 859143, 13333488
Offset: 0

Views

Author

Peter Bala, Jul 17 2022

Keywords

Comments

Compare with A111528 and A355721, which have similar definitions and properties.

Examples

			Square array begins
1, 3, 15,  111,  1131,   14943,    243915,    4742391,    106912131, ...
1, 3, 24,  282,  4236,   76548,   1608864,   38488152,   1032125136, ...
1, 3, 33,  507,  9609,  212835,   5350785,  149961675,   4628365305, ...
1, 3, 42,  786, 17736,  459768,  13333488,  425600976,  14791250688, ...
1, 3, 51, 1119, 29103,  859143,  28091463, 1002057591,  38606468343, ...
1, 3, 60, 1506, 44196, 1458588,  52917360, 2080630776,  87823112496, ...
1, 3, 69, 1947, 63501, 2311563,  91949469, 3943276347, 180679742061, ...
1, 3, 78, 2442, 87504, 3477360, 150259200, 6970190160, 344116224960, ...
		

Crossrefs

Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355796 (row 3), A355797 (row 4). Cf. A008544, A111528, A355721.

Programs

  • Maple
    T := (n,k) -> coeff(series(hypergeom([n+2/3, 1], [], 3*x)/ hypergeom([n-1/3, 1], [], 3*x), x, 21), x, k):
    # display as a sequence
    seq(seq(T(n-k,k), k = 0..n), n = 0..10);
    # display as a square array
    seq(print(seq(T(n,k), k = 0..10)), n = 0..10);

Formula

Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f. for row n >= 0: R(n,x) = ( Sum_{k >= 0} t(n+k)/t(n)*x^k )/( Sum_{k >= 0} t(n-1+k)/t(n-1)*x^k ).
R(n,x)/(1 - (3*n-1)*x*R(n,x)) = Sum_{k >= 0} t(n+k)/t(n)*x^k.
R(n,x) = 1/(1 + (3*n-1)*x - (3*n+2)*x/(1 + (3*n+2)*x - (3*n+5)*x/(1 + (3*n+5)*x - (3*n+8)*x/(1 + (3*n+8)*x - ... )))) (continued fraction).
R(n,x) satisfies the Riccati differential equation 3*x^2*d/dx(R(n,x)) + (3*n-1)*x*R(n,x)^2 - (1 + (3*n-4)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives R(n,x) = 1/(1 - 3*x/(1 - (3*n+2)*x/(1 - 6*x/(1 - (3*n+5)*x/(1 - 9*x/(1 - (3*n+8)*x/(1 - 12*x/(1 - ...)))))))), a continued fraction of Stieltjes type.

A355794 Row 1 of A355793.

Original entry on oeis.org

1, 3, 24, 282, 4236, 76548, 1608864, 38488152, 1032125136, 30670171248, 1000637672064, 35571839009952, 1368990872569536, 56720594992438848, 2517761078627172864, 119222916630934484352, 5999613754698100628736, 319763269764299852744448, 17994913747767982690289664
Offset: 0

Views

Author

Peter Bala, Jul 19 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355795 (row 2), A355796 (row 3), A355797 (row 4).

Programs

  • Maple
    n := 1: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

O.g.f.: A(x) = ( Sum_{k >= 0} t(k+1)/t(1)*x^k )/( Sum_{k >= 0} t(k)/t(0)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 2*x*A(x)) = Sum_{k >= 0} t(k+1)/t(1)*x^k.
A(x) = 1/(1 + 2*x - 5*x/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 2*x*A(x)^2 - (1 - x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 5*x/(1 - 6*x/(1 - 8*x/(1 - 9*x/(1 - 11*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.

A355795 Row 2 of A355793.

Original entry on oeis.org

1, 3, 33, 507, 9609, 212835, 5350785, 149961675, 4628365305, 155913036915, 5692874399025, 224034935130075, 9456933847187625, 426402330032719875, 20460268520575152225, 1041301103429870128875, 56040353252589013121625, 3180443637298592493577875, 189863589771186976073108625
Offset: 0

Views

Author

Peter Bala, Jul 21 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355796 (row 3), A355797 (row 4).

Programs

  • Maple
    n := 2: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

O.g.f.: A(x) = ( Sum_{k >= 0} t(k+2)/t(2)*x^k )/( Sum_{k >= 0} t(k+1)/t(1)*x^k ), where t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
A(x)/(1 - 5*x*A(x)) = Sum_{k >= 0} t(k+2)/t(2)*x^k.
A(x) = 1/(1 + 5*x - 8*x/(1 + 8*x - 11*x/(1 + 11*x - 14*x/(1 + 14*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*A(x)' + 5*x*A(x)^2 - (1 + 2*x)*A(x) + 1 = 0 with A(0) = 1.
Hence by Stokes, A(x) = 1/(1 - 3*x/(1 - 8*x/(1 - 6*x/(1 - 11*x/(1 - 9*x/(1 - 14*x/(1 - 12*x/(1 - ... )))))))), a continued fraction of Stieltjes type.

A355797 Row 4 of A355793.

Original entry on oeis.org

1, 3, 51, 1119, 29103, 859143, 28091463, 1002057591, 38606468343, 1595167432599, 70315835952471, 3293268346004439, 163337193581191575, 8554718468806548951, 471976737725208306327, 27369722655919760451159, 1664858070989667129693975, 106029602841882346657155543
Offset: 0

Views

Author

Peter Bala, Jul 21 2022

Keywords

Crossrefs

Cf. A355793 (table).
Cf. A112936 (row 0), A355794 (row 1), A355795 (row 2), A355796 (row 3).

Programs

  • Maple
    n := 4: seq(coeff(series( hypergeom([n+2/3, 1], [], 3*x)/hypergeom([n-1/3, 1], [], 3*x ), x, 21), x, k), k = 0..20);

Formula

Let t(n) = Product_{k = 1..n} 3*k-1 = A008544(n) (triple factorial numbers).
O.g.f.: A(x) = ( Sum_{k >= 0} t(k+4)/t(4)*x^k )/( Sum_{k >= 0} t(k+3)/t(3)*x^k ).
A(x)/(1 - 11*x*A(x)) = Sum_{k >= 0} t(k+4)/t(4)*x^k.
A(x) = 1/(1 + 11*x - 14*x/(1 + 14*x -17*x/(1 + 17*x - 20*x/(1 + 20*x - ... )))) (continued fraction).
A(x) satisfies the Riccati differential equation 3*x^2*d/dx(A(x)) + 11*x*A(x)^2 - (1 + 8*x)*A(x) + 1 = 0 with A(0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 3*x/(1 - 14*x/(1 - 6*x/(1 - 17*x/(1 - 9*x/(1 - 20*x/(1 - 12*x/(1 - 23*x/(1 - ...))))))))), a continued fraction of Stieltjes type.
Showing 1-4 of 4 results.