cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355814 Smallest value t such that 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 has exactly n solutions (p,q) where p,q < t; or -1 if no such t exists.

Original entry on oeis.org

35, 55, 210, 240, 595, 360, 560, 504, 630, 720, 1295, 1848, 1890, 1386, 1680, 2640, 2520, 3024, 5600, 3960, 2730, 4680, 6160, 8775, 9450, 5850, 5460, 5544, 9520, 15470, 5040, 7920, 9240, 25740, 10710, 9360, 13860, 13104, 8190, 17550, 10920, 18720, 15120, 22176
Offset: 1

Views

Author

Jianing Song, Jul 18 2022

Keywords

Comments

Terms beyond a(11) = 1295 other than a(14) = 1386, if not equal to -1, are greater than 1500.
Conjecture: a(n) is divisible by 35 for odd n.

Examples

			t = 35: (s,p,q) = (5,7,7);
t = 55: (s,p,q) = (10,11,22),(10,22,11);
t = 210: (s,p,q) = (30,42,42),(95,114,133),(95,133,114);
t = 240: (s,p,q) = (70,84,112),(70,112,84),(108,135,144),(108,144,135);
t = 595: (s,p,q) = (85,91,221),(85,119,119),(85,221,91),(210,238,357),(210,357,238);
t = 360: (s,p,q) = (20,24,36),(20,36,24),(30,40,45),(30,45,40),(105,126,168),(105,168,126);
t = 560: (s,p,q) = (45,48,126),(70,80,140),(80,112,112),(45,126,48),(70,140,80),(252,315,336),(252,336,315);
t = 504: (s,p,q) = (42,56,63),(54,56,189),(42,63,56),(63,72,126),(63,126,72),(112,144,168),(112,168,144),(54,189,56);
t = 630: (s,p,q) = (35,42,63),(35,63,42),(56,63,120),(56,120,63),(90,126,126),(140,180,210),(140,210,180),(285,342,399),(285,399,342);
t = 720: (s,p,q) = (40,48,72),(40,72,48),(60,80,90),(60,90,80),(165,176,396),(210,252,336),(210,336,252),(165,396,176),(324,405,432),(324,432,405).
		

Crossrefs

Programs

  • PARI
    b(n) = my(v=[;],r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v,[p;q])))); v
    search_up_to(Max,lim) = my(v=vector(Max,i,-1),num); for(n=1, lim, if((num=#b(n))>0 && num<=Max && v[num]==-1, v[num]=n)); v

Extensions

a(12)-a(29) from Bert Dobbelaere, Jul 19 2022
More terms from Jinyuan Wang, Jan 25 2025