A366384 Lexicographically earliest infinite sequence such that a(i) = a(j) => A355828(i) = A355828(j) for all i, j >= 1, where A355828 is Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n).
1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 1, 9, 3, 7, 3, 10, 1, 5, 3, 11, 7, 5, 12, 8, 3, 2, 3, 13, 1, 5, 1, 7, 3, 5, 1, 14, 3, 2, 3, 15, 7, 5, 3, 7, 7, 7, 1, 8, 3, 11, 1, 16, 2, 5, 3, 17, 3, 5, 7, 18, 19, 2, 3, 20, 1, 2, 3, 11, 3, 5, 7, 8, 1, 2, 3, 21, 4, 5, 3, 4, 1, 5, 2, 22, 3, 7, 1, 15, 1, 5, 1, 23, 3, 7, 24
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A342671(n) = gcd(sigma(n), A003961(n)); v366384 = rgs_transform(DirInverseCorrect(vector(up_to,n,A342671(n)))); A366384(n) = v366384[n];