cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355829 Dirichlet inverse of A009194, the greatest common divisor of sigma(n) and n, where sigma is the sum of divisors function.

Original entry on oeis.org

1, -1, -1, 0, -1, -4, -1, 0, 0, 0, -1, 7, -1, 0, -1, 0, -1, 8, -1, 1, 1, 0, -1, -10, 0, 0, 0, -25, -1, 10, -1, 0, -1, 0, 1, 15, -1, 0, 1, -8, -1, 6, -1, -1, 2, 0, -1, 16, 0, 2, -1, 1, -1, -6, 1, 46, 1, 0, -1, -9, -1, 0, 0, 0, 1, 10, -1, 1, -1, 2, -1, -29, -1, 0, 4, -1, 1, 6, -1, 16, 0, 0, -1, 29, 1, 0, -1, 2, -1, -8
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2022

Keywords

Crossrefs

Cf. also A355828.

Programs

  • Mathematica
    s[n_] := GCD[n, DivisorSigma[1, n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 20 2022 *)
  • PARI
    A009194(n) = gcd(n, sigma(n));
    memoA355829 = Map();
    A355829(n) = if(1==n,1,my(v); if(mapisdefined(memoA355829,n,&v), v, v = -sumdiv(n,d,if(dA009194(n/d)*A355829(d),0)); mapput(memoA355829,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA009194(n/d) * a(d).