cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A355833 Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A348717(i) = A348717(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 4, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 4, 17, 18, 19, 3, 20, 3, 21, 22, 23, 10, 24, 3, 25, 26, 27, 3, 28, 3, 29, 8, 30, 3, 31, 4, 32, 33, 34, 3, 35, 14, 36, 37, 38, 3, 39, 3, 40, 41, 42, 43, 44, 3, 45, 46, 47, 3, 48, 3, 49, 50, 51, 10, 52, 3, 53, 11, 54, 3, 55, 26, 56, 57, 58, 3, 59, 14, 60, 61, 62, 33, 63, 3, 64, 65, 66
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A342671(n), A348717(n)].
Terms that occur in positions given by A349166 may occur only a finite number of times in this sequence. See also the array A355924.

Examples

			a(100) = a(3025) [= 66 as allotted by the rgs-transform] because 3025 = A003961(A003961(100)), therefore it is in the same column of the prime shift array A246278 as 100 is], and as A342671(100) = A342671(3025) = 7.
a(300) = a(21175) [= 200 as allotted by the rgs-transform], as 21175 = A003961(A003961(300)) and as A342671(300) = A342671(21175) = 7.
a(1215) = a(21875) [= 831 as allotted by the rgs-transform] because 21875 = A003961(1215), therefore it is in the same column of the prime shift array A246278 as 1215 is, and as A342671(1215) = A342671(21875) = 7.
a(2835) = a(48125) [= 1953 as allotted by the rgs-transform] because 48125 = A003961(2835) and as A342671(2835) = A342671(48125) = 11.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    Aux355833(n) = [A342671(n), A348717(n)];
    v355833 = rgs_transform(vector(up_to,n,Aux355833(n)));
    A355833(n) = v355833[n];

A355835 Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A355442(i) = A355442(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 5, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 25, 26, 3, 27, 28, 29, 3, 30, 3, 31, 32, 33, 3, 34, 17, 35, 36, 37, 3, 38, 39, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 56, 57, 3, 58, 59, 60, 3, 61, 62, 63, 64, 65, 3, 66, 67, 68, 69, 70, 71, 72, 3, 73, 74
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A348717(n), A355442(n)].
For all i, j: a(i) = a(j) => A355836(i) = A355836(j).
Terms that occur in positions given by A355822 may occur only a finite number of times in this sequence. Most of these seem to be in the singular equivalence classes, i.e., have unique values, apart from exceptions like pairs {6, 15}, {273, 1729}, (see the examples and the array A355926). In a coarser variant A355836 multiple such finite equivalence classes may coalesce together into several infinite equivalence classes.

Examples

			a(6) = a(15) [= 5 as allotted by the rgs-transform] because 15 = A003961(6) [i.e., 15 is in the same column in prime shift array A246278 as 6 is], and because A355442(6) = A355442(15) = 5.
a(138) = a(435) [= 103 as allotted by the rgs-transform] because 435 = A003961(138), and A355442(138) = A355442(435) = 5.
a(273) = a(1729) [= 205 as allotted by the rgs-transform] because 1729 = A003961(A003961(273)) [i.e., 273 and 1729 are in the same column of A246278], and A355442(273) = A355442(1729) = 11.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    Aux355835(n) = [A348717(n), A355442(n)];
    v355835 = rgs_transform(vector(up_to,n,Aux355835(n)));
    A355835(n) = v355835[n];

A355931 Greatest common divisor of the odd part of n and sigma(n), where sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 9, 7, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[DivisorSigma[1, n], n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A355931(n) = gcd(A000265(n), sigma(n));
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def A355931(n): return gcd(divisor_sigma(n),n>>(~n&n-1).bit_length()) # Chai Wah Wu, Jul 22 2022

Formula

a(n) = gcd(A000203(n), A000265(n)) = gcd(n, A161942(n)) = A000265(A009194(n)).
Showing 1-3 of 3 results.