A355837 Dirichlet inverse of A322327.
1, -2, -2, 0, -2, 4, -2, 2, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, -4, 0, 4, 2, 0, -2, -8, -2, -2, 4, 4, 4, 0, -2, 4, 4, -4, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, -4, 4, -4, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, -4, -2, 0, 4, 0, 4, 4, 4, 4
Offset: 1
Links
Crossrefs
Cf. A322327.
Programs
-
Mathematica
f[p_, e_] := 2 * (-1)^((e + 1)/2) * Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
-
PARI
A355837(n) = factorback(apply(e -> 2*(e%2)*((-1)^((1+e)/2)), factor(n)[, 2]));
Formula
Multiplicative with a(p^e) = 2 * (e mod 2) * (-1)^((e+1)/2) for prime p and e>0.
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA322327(n/d) * a(d).
Dirichlet g.f.: zeta(4*s)/(zeta(s)^2*zeta(2*s)). - Amiram Eldar, Dec 29 2022