cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355837 Dirichlet inverse of A322327.

Original entry on oeis.org

1, -2, -2, 0, -2, 4, -2, 2, 0, 4, -2, 0, -2, 4, 4, 0, -2, 0, -2, 0, 4, 4, -2, -4, 0, 4, 2, 0, -2, -8, -2, -2, 4, 4, 4, 0, -2, 4, 4, -4, -2, -8, -2, 0, 0, 4, -2, 0, 0, 0, 4, 0, -2, -4, 4, -4, 4, 4, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 4, -8, -2, 0, -2, 4, 0, 0, 4, -8, -2, 0, 0, 4, -2, 0, 4, 4, 4, -4, -2, 0, 4, 0, 4, 4, 4, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2022, based on Werner Schulte's comment in A322327

Keywords

Crossrefs

Cf. A322327.

Programs

  • Mathematica
    f[p_, e_] := 2 * (-1)^((e + 1)/2) * Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
  • PARI
    A355837(n) = factorback(apply(e -> 2*(e%2)*((-1)^((1+e)/2)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = 2 * (e mod 2) * (-1)^((e+1)/2) for prime p and e>0.
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA322327(n/d) * a(d).
Dirichlet g.f.: zeta(4*s)/(zeta(s)^2*zeta(2*s)). - Amiram Eldar, Dec 29 2022