A355893 Let A090252(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A090252(n); a(1)=0 by convention.
0, 1, 10, 100, 2, 1000, 20, 10000, 100000, 1000000, 3, 10000000, 100000000, 200, 1010, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 4, 10000000000000000
Offset: 1
Keywords
Examples
The initial terms of A090252 are: 1 -> 0 2 = 2^1 ->1 3 = 2^0 3^1 -> 10 5 = 2^0 3^0 5^1 -> 100 4 = 2^2 -> 2 7 = 2^0 3^0 5^0 7^1 -> 1000 9 = 2^0 3^2 -> 20 ... The terms, right-justified, for comparison with A355892, are: .1 ...................................0 .2 ...................................1 .3 ..................................10 .4 .................................100 .5 ...................................2 .6 ................................1000 .7 ..................................20 .8 ...............................10000 .9 ..............................100000 10 .............................1000000 11 ...................................3 12 ............................10000000 13 ...........................100000000 14 .................................200 15 ................................1010 16 ..........................1000000000 17 .........................10000000000 18 ........................100000000000 19 .......................1000000000000 20 ......................10000000000000 21 .....................100000000000000 22 ....................1000000000000000 23 ...................................4 24 ...................10000000000000000 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1073
Programs
-
Mathematica
nn = 24, s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; nn, -1]]; f[n_] := If[n == 1, 0, Function[g, FromDigits@ Reverse@ ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[f[s[[#]]] &, nn] (* Michael De Vlieger, Aug 24 2022 *)
Comments