cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355926 Square array A(n,k) = A355442(A246278(n,k)), read by falling antidiagonals.

Original entry on oeis.org

3, 9, 1, 5, 5, 1, 3, 5, 1, 1, 3, 125, 7, 1, 1, 5, 5, 343, 1, 1, 1, 3, 175, 7, 11, 1, 1, 1, 9, 1, 49, 1, 1, 1, 1, 1, 25, 125, 7, 121, 1, 1, 1, 1, 1, 3, 245, 2401, 1, 1, 1, 1, 1, 1, 1, 3, 1, 77, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 49, 11, 28561, 1, 1, 1, 1, 1, 1, 1, 3, 175, 7, 121, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Examples

			The top left corner of the array:
   n= 1  2  3    4  5    6  7      8    9   10 11     12 13   14  15       16
  2n= 2  4  6    8 10   12 14     16   18   20 22     24 26   28  30       32
----+--------------------------------------------------------------------------
  1 | 3, 9, 5,   3, 3,   5, 3,     9,  25,   3, 3,     5, 3,   9,  7,       3,
  2 | 1, 5, 5, 125, 5, 175, 1,   125, 245,   1, 5,   175, 5,   5, 35,       1,
  3 | 1, 1, 7, 343, 7,  49, 7,  2401,  77,  49, 7,    77, 7,  49, 77,   16807,
  4 | 1, 1, 1,  11, 1, 121, 1,     1,  11, 121, 1, 17303, 1, 121, 11,    1331,
  5 | 1, 1, 1,   1, 1,   1, 1, 28561,   1,   1, 1,  2197, 1,   1, 13,   28561,
  6 | 1, 1, 1,   1, 1,   1, 1,     1,   1,   1, 1,    17, 1,   1,  1, 1419857,
  7 | 1, 1, 1,   1, 1,   1, 1,     1,   1,   1, 1,     1, 1,   1,  1,     361,
  8 | 1, 1, 1,   1, 1,   1, 1,     1,   1,   1, 1,     1, 1,   1,  1,       1,
  9 | 1, 1, 1,   1, 1,   1, 1,     1,   1,   1, 1,     1, 1,   1,  1,       1,
		

Crossrefs

Cf. also A355924, A355925 for similarly constructed arrays.

Programs

  • PARI
    up_to = 105;
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A355926sq(row,col) = A355442(A246278sq(row,col));
    A355926list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355926sq(col,(a-(col-1))))); (v); };
    v355926 = A355926list(up_to);
    A355926(n) = v355926[n];