A355934 a(n) = sigma(n) / gcd(sigma(n), sigma(A003961(n))), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
1, 3, 2, 7, 3, 1, 2, 3, 13, 9, 6, 14, 7, 1, 1, 31, 9, 39, 5, 21, 4, 9, 4, 1, 31, 7, 10, 14, 15, 3, 16, 9, 4, 27, 1, 7, 19, 5, 14, 9, 21, 1, 11, 6, 39, 3, 8, 62, 3, 31, 3, 49, 9, 5, 9, 1, 5, 45, 30, 7, 31, 12, 26, 127, 7, 3, 17, 63, 8, 3, 36, 39, 37, 19, 62, 35, 4, 7, 20, 93, 11, 63, 14, 28, 27, 11, 5, 9, 45, 117
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := Denominator[Times @@ f @@@ FactorInteger[n] / DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Jul 22 2022 *)
-
PARI
A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; A355934(n) = { my(u=sigma(n)); (u/gcd(A003973(n), u)); };
Comments