cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355955 a(n) is the least distance of two nodes on the same grid line in an infinite square lattice of one-ohm resistors for which the resistance measured between the two nodes is greater than n ohms.

Original entry on oeis.org

1, 5, 107, 2460, 56922, 1317211, 30481165, 705355254, 16322409116
Offset: 0

Views

Author

Hugo Pfoertner, Jul 23 2022

Keywords

Comments

The terms are obtained by a high-precision evaluation of the integral R(j,k) = (1/Pi) * Integral_{beta=0..Pi} (1 - exp(-abs(j)*alphas(beta))*cos(k*beta)) / sinh(alphas(beta)), with alphas(beta) = log(2 - cos(beta) + sqrt(3 + cos(beta)*(cos(beta) - 4))) such that floor(R(m-1,0)) < floor(R(m,0)). The values of m for which this condition is satisfied are the terms of the sequence. See Atkinson and van Steenwijk (1999, page 491, Appendix B) for a Mathematica implementation of the integral.
a(9) = 377711852375, found by solving R(x) - 9 = 0, using the asymptotic formula provided by Cserti (2000, page 5), R(x) = (log(x) + gamma + log(8)/2)/Pi, needs independent confirmation. gamma is A001620.

Examples

			a(0) = 1: R(1,0) = 1/2 is the first resistance > 0;
a(1) = 5: R(4,0) = 0.953987..., R(5,0) = 1.025804658...;
a(2) = 107: R(106,0) = 1.999103258858..., R(107,0) = 2.002092149977722...;
a(3) = 2460: R(2459,0) = 2.999894481..., R(2460,0) = 3.0000239019301...;
a(4) = 56922: R(56921,0) = 3.99999536602..., R(56922,0) =  4.0000009581... .
		

Crossrefs

Cf. A355565, A355589 (same problem for triangular lattice).

Programs

  • PARI
    \\ can be used to calculate estimates of terms for n >= 2, using the asymptotic formula. For n <= 8 results identical to those using the exact evaluation of the full integral are produced, but equality for higher terms might not hold, although with extremely remote probability.
    a355955_asymp(upto) = {my(c=2.2, Rsqasy(L)=(1/Pi)*(log(L)+Euler+log(8)/2), d, m); for (n=2, upto, d=exp(c*n); d=solve(x=0.5*d, 2.5*d, Rsqasy(x)-n); print1(ceil(d),", "); c=log(d)/n)};
    a355955_asymp(8)