A355968 a(n) is the smallest number that has exactly n odious divisors (A000069).
1, 2, 4, 8, 16, 28, 64, 56, 84, 112, 1024, 168, 4096, 448, 336, 728, 36309, 672, 57057, 1456, 1344, 7168, 105105, 2184, 6384, 24150, 5376, 5208, 405405, 4368, 389025, 11648, 20020, 72618, 10416, 8736, 927675, 114114, 48300, 24024, 855855, 17472, 1426425, 40040
Offset: 1
Examples
a(6) = 28 since 28 has 6 divisors {1, 2, 4, 7, 14, 28} that have all an odd number of 1's in their binary expansion: 1, 10, 100, 111, 1110 and 11100; also, no positive integer smaller than 28 has six divisors that are odious.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[20, 10^6] (* Amiram Eldar, Jul 21 2022 *)
-
PARI
isod(n) = hammingweight(n) % 2; \\ A000069 a(n) = my(k=1); while (sumdiv(k, d, isod(d)) != n, k++); k; \\ Michel Marcus, Jul 22 2022
-
Python
from sympy import divisors from itertools import count, islice def c(n): return bin(n).count("1")&1 def f(n): return sum(1 for d in divisors(n, generator=True) if c(d)) def agen(): n, adict = 1, dict() for k in count(1): fk = f(k) if fk not in adict: adict[fk] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 36))) # Michael S. Branicky, Jul 25 2022
Extensions
More terms from Amiram Eldar, Jul 21 2022
Comments