cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355969 Positions of records in A227872, i.e., integers whose number of odious divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 56, 84, 112, 168, 336, 672, 1344, 2184, 4368, 8736, 17472, 30576, 34944, 41664, 48048, 61152, 80080, 83328, 96096, 122304, 160160, 192192, 240240, 320320, 336336, 480480, 672672, 960960, 1345344, 1681680, 1921920, 2489760, 2690688, 2738736
Offset: 1

Views

Author

Bernard Schott, Jul 22 2022

Keywords

Comments

Corresponding records of number of odious divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...

Examples

			a(7) = 56 is in the sequence because A227872(56) = 8 is larger than any earlier value in A227872.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    lista(nn)= my(list = List(), m=0, new); for (n=1, nn, new = sumdiv(n, d, isod(d)); if (new > m, listput(list, n); m = new);); Vec(list); \\ Michel Marcus, Jul 22 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): return bin(n).count("1")&1
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 30))) # Michael S. Branicky, Jul 23 2022

Extensions

More terms from Amiram Eldar, Jul 22 2022