cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356020 Positions of records in A356018, i.e., integers whose number of evil divisors sets a new record.

Original entry on oeis.org

1, 3, 6, 12, 18, 30, 60, 90, 120, 180, 360, 540, 720, 1080, 1440, 2160, 3780, 4320, 6120, 7560, 8640, 12240, 15120, 24480, 27720, 30240, 36720, 48960, 50400, 55440, 73440, 83160, 110880, 128520, 138600, 166320, 221760, 257040, 277200, 332640, 471240, 514080, 554400
Offset: 1

Views

Author

Bernard Schott, Jul 24 2022

Keywords

Comments

Corresponding records of number of evil divisors are 0, 1, 2, 3, 4, 6, 9, 10, 12, 15, ...

Examples

			60 is in the sequence because A356018(60) = 9 is larger than any earlier value in A356018.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, EvenQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 24 2022 *)
  • PARI
    upto(n) = my(res = List(), r=-1); forfactored(i=1, n, if(numdiv(i[2]) > r, d = divisors(i[2]); c=sum(j=1, #d, isevil(d[j])); if(c>r, r=c; listput(res,i[1])))); res
    isevil(n) = bitand(hammingweight(n), 1)==0 \\ David A. Corneth, Jul 24 2022
    
  • Python
    from sympy import divisors
    from itertools import count, islice
    def c(n): return bin(n).count("1")&1 == 0
    def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
    def agen(record=-1):
        for k in count(1):
            if f(k) > record: record = f(k); yield k
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jul 24 2022

Extensions

More terms from Amiram Eldar, Jul 24 2022