A356039
a(n) = Sum_{k=1..n} binomial(n,k) * sigma_3(k).
Original entry on oeis.org
1, 11, 58, 243, 866, 2804, 8485, 24387, 67333, 180086, 469338, 1196976, 2996956, 7385837, 17954243, 43125267, 102494548, 241309031, 563341508, 1305142418, 3002938045, 6866090880, 15609292379, 35299794600, 79443050541, 177989130174, 397124963671, 882642816697, 1954708794400
Offset: 1
-
with(numtheory): seq(add(sigma[3](i)*binomial(n,i), i=1..n), n=1..60); # Ridouane Oudra, Oct 31 2022
-
Table[Sum[Binomial[n, k] * DivisorSigma[3, k], {k, 1, n}], {n, 1, 40}]
-
a(n) = sum(k=1, n, binomial(n,k) * sigma(k, 3)); \\ Michel Marcus, Jul 24 2022
A356339
a(n) = Sum_{k=1..n} binomial(2*n, n-k) * sigma_2(k).
Original entry on oeis.org
1, 9, 55, 297, 1496, 7215, 33783, 154825, 698077, 3107424, 13690161, 59802471, 259377080, 1118176887, 4795381640, 20472223529, 87051685546, 368857919085, 1558036408998, 6562564601592, 27571934249754, 115574440020477, 483444570596465, 2018365519396135, 8411811012694246
Offset: 1
-
Table[Sum[Binomial[2*n, n-k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
-
a(n) = sum(k=1, n, binomial(2*n, n-k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022
A356342
a(n) = Sum_{k=1..n} binomial(2*n, k) * sigma_2(k).
Original entry on oeis.org
2, 34, 281, 2178, 12397, 79729, 398932, 2224354, 10959221, 56341309, 255685080, 1334248401, 5892916876, 28082515768, 127714609741, 604178948098, 2590365128017, 12284868071365, 52160408294826, 241445420212893, 1049251819301974, 4674022621994716, 19563451165603647
Offset: 1
-
Table[Sum[Binomial[2*n, k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
-
a(n) = sum(k=1, n, binomial(2*n, k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022
A356345
a(n) = Sum_{k=1..n} binomial(2*k, k) * sigma_2(k).
Original entry on oeis.org
2, 32, 232, 1702, 8254, 54454, 226054, 1320004, 5744424, 29762704, 115825408, 683698168, 2451800168, 12480950168, 52811505368, 257779918358, 934525722158, 5063712283658, 17858697779258, 93122902514978, 362251839734978, 1645752207604178, 6009470493232178, 33419933623867178
Offset: 1
-
Table[Sum[Binomial[2*k, k]*DivisorSigma[2, k], {k, 1, n}], {n, 1, 30}]
-
a(n) = sum(k=1, n, binomial(2*k, k) * sigma(k, 2)); \\ Michel Marcus, Aug 05 2022
Showing 1-4 of 4 results.
Comments