A356040 a(n) is the smallest integer that has exactly n odious divisors (A227872) and n evil divisors (A356018).
3, 6, 12, 24, 48, 96, 192, 210, 252, 528, 3072, 420, 12288, 2112, 1008, 840, 196608, 2016, 786432, 1680, 4032, 33792, 12582912, 3360, 30000, 135168, 16128, 6720, 805306368, 19152, 3221225472, 13440, 64512, 2162688, 120000, 26880, 206158430208, 8650752, 258048, 31920
Offset: 1
Examples
48 has ten divisors, five of which are odious {1, 2, 4, 8, 16} as they have an odd number of 1's in their binary expansion: 1, 10, 100, 1000 and 10000; the five other divisors are evil {3, 6, 12, 24, 48} as they have an even number of 1's in their binary expansion: 11, 110, 1100, 11000 and 110000; also, no positive integer smaller than 48 has five divisors that are evil and five divisors that are odious, hence a(5) = 48.
Links
- David A. Corneth, Table of n, a(n) for n = 1..3322
Programs
-
Mathematica
f[n_] := DivisorSum[n, {1, (-1)^DigitCount[#, 2][[1]]} &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i, d}, While[c < len && n < nmax, i = f[n]; If[i[[2]] == 0, d = i[[1]]/2; If[d <= len && s[[d]] == 0, c++; s[[d]] = n]]; n++]; s]; seq[16, 10^6] (* Amiram Eldar, Jul 24 2022 *)
-
PARI
a(n) = if(isprime(n), return(2^(n-1)*3)); forfactored(i=1, 2^(n-1)*3, if(numdiv(i[2]) == 2*n, d=divisors(i[2]); if(sum(j=1, #d, isevil(d[j])) == n, return(i[1])))) isevil(n) = bitand(hammingweight(n), 1) == 0 \\ David A. Corneth, Jul 24 2022
-
Python
from sympy import divisors, isprime from itertools import count, islice def f(n): counts = [0, 0] for d in divisors(n, generator=True): counts[bin(d).count("1")&1] += 1 return counts[0] if counts[0] == counts[1] else -1 def a(n): if isprime(n): return 2**(n-1) * 3 return next(k for k in count(1) if f(k) == n) print([a(n) for n in range(1, 34)]) # Michael S. Branicky, Jul 24 2022
Formula
a(n) <= 2^(n-1) * 3.
a(n) = 2^(n-1) * 3 if n is prime. - David A. Corneth, Jul 24 2022
a(n) >= A005179(2*n). - Michael S. Branicky, Jul 24 2022
Extensions
a(9)-a(37) from Amiram Eldar, Jul 24 2022
a(38)-a(40) from David A. Corneth, Jul 24 2022
Comments