A356041 Numerator of the permanent of the matrix [m(j,k)]_{j,k=0..2*n}, where m(j,k) is 1 or (j+k)/(j-k) according as j = k or not.
1, -10, 5870, -436619903, 204409938157631, -445211270783816444430983, 396293055917701185511708646165266818589, -50075241686736491417389691481681057226117081701278447, 5775845962974711619751142332219720943292883679628990682130802753216873
Offset: 0
Keywords
Examples
a(1) = -10 since the permanent of the matrix [m(j,k)]_{j,k=0,1,2} = [1,-1,1; 1,1,-3; 1,3,1] is -10.
Links
- Yue-Feng She, Zhi-Wei Sun, and Wei Xia, A novel permanent identity, arXiv:2208.12167 [math.CO], 2022.
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
- Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
Crossrefs
Cf. A204249.
Programs
-
Mathematica
a[n_]:=a[n]=Numerator[Permanent[Table[If[j==k,1,(j+k)/(j-k)],{j,0,2n},{k,0,2n}]]] Table[a[n],{n,0,8}]
-
PARI
a(n) = numerator(matpermanent(matrix(2*n+1, 2*n+1, i, j, i--; j--; if (i==j, 1, (i+j)/(i-j))))); \\ Michel Marcus, Jul 24 2022
Comments