cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356041 Numerator of the permanent of the matrix [m(j,k)]_{j,k=0..2*n}, where m(j,k) is 1 or (j+k)/(j-k) according as j = k or not.

Original entry on oeis.org

1, -10, 5870, -436619903, 204409938157631, -445211270783816444430983, 396293055917701185511708646165266818589, -50075241686736491417389691481681057226117081701278447, 5775845962974711619751142332219720943292883679628990682130802753216873
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 24 2022

Keywords

Comments

Conjecture 1. If n is a positive odd integer, x(0) = 0, and x(1),...,x(n) are variables, then the permanent of the matrix [x(j,k)]_{j,k=0..n} vanishes, where x(j,k) is 1 or (x(j)+x(k))/(x(j)-x(k)) according as j = k or not.
Conjecture 2: (-1)^n*a(n) > 0 for all n = 0,1,2,...
Conjecture 3: For any odd prime p, the permanent of the matrix [m(j,k)]_{j,k=0..p-1} is congruent to 1 - (-1)^((p-1)/2) modulo p, where m(j,k) is defined as in the title..
Conjecture 4: For any odd prime p, the permanent of the matrix M = [m(j,k)]_{j,k=1..p-1} is congruent to ((p-2)!!)^2 modulo p^2, and det(M) is congruent to ((p-2)!!)^2*(-1)^((p+1)/2)/(p-2) modulo p^2.

Examples

			a(1) = -10 since the permanent of the matrix [m(j,k)]_{j,k=0,1,2} = [1,-1,1; 1,1,-3; 1,3,1] is -10.
		

Crossrefs

Cf. A204249.

Programs

  • Mathematica
    a[n_]:=a[n]=Numerator[Permanent[Table[If[j==k,1,(j+k)/(j-k)],{j,0,2n},{k,0,2n}]]]
    Table[a[n],{n,0,8}]
  • PARI
    a(n) = numerator(matpermanent(matrix(2*n+1, 2*n+1, i, j, i--; j--; if (i==j, 1, (i+j)/(i-j))))); \\ Michel Marcus, Jul 24 2022