A346308
Intersection of Beatty sequences for sqrt(2) and sqrt(3).
Original entry on oeis.org
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...).
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...).
a(n) = (1,5,8,12,...).
In the notation in Comments:
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085.
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A346308_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1)))
A346308_list = list(islice(A346308_gen(),30)) # Chai Wah Wu, Aug 06 2022
Original entry on oeis.org
2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, 42, 49, 52, 56, 59, 63, 66, 70, 73, 80, 82, 87, 89, 94, 97, 101, 104, 106, 108, 111, 113, 115, 118, 120, 123, 125, 127, 130, 132, 134, 137, 141, 144, 149, 151, 156, 158, 165, 172, 175, 179, 182, 186, 189, 196
Offset: 1
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
Original entry on oeis.org
3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, 88, 95, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 143, 150, 157, 174, 180, 187, 204, 211, 218, 221, 225, 228, 232, 235, 242, 245, 249, 252, 256, 259, 266, 273, 284, 285, 287, 289, 290, 292, 294
Offset: 1
(1) u ^ v = ( 1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2) u ^ v' = ( 2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085
(3) u' ^ v = ( 3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
Intersection[u, v] (* A346308 *)
Intersection[u, v1] (* A356085 *)
Intersection[u1, v] (* A356086 *)
Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A356086_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),((k:=n<<1)+isqrt(k*n) for n in count(1)))
A356086_list = list(islice(A356086_gen(),30)) # Chai Wah Wu, Aug 06 2022
Showing 1-3 of 3 results.
Comments