cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356091 a(n) = A001952(A054406(n)).

Original entry on oeis.org

6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, 95, 102, 112, 119, 126, 136, 143, 150, 160, 167, 177, 184, 191, 201, 208, 215, 225, 232, 238, 249, 256, 266, 273, 279, 290, 297, 303, 314, 320, 331, 338, 344, 355, 361, 368, 378, 385, 392, 402, 409, 419, 426, 433
Offset: 1

Views

Author

Clark Kimberling, Aug 05 2022

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. See A356088.

Examples

			(1)  u o v   = (1,  4,  7,  8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088
(2)  u o v'  = (2,  5,  9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089
(3)  u' o v  = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090
(4)  u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091
		

Crossrefs

Cf. A001951, A001952, A022838, A054406, A346308 (intersections instead of results of composition), A356088, A356089, A356090.

Programs

  • Mathematica
    z = 600; zz = 100;
    u = Table[Floor[n*Sqrt[2]], {n, 1, z}];  (* A001951 *)
    u1 = Complement[Range[Max[u]], u];  (* A001952 *)
    v = Table[Floor[n*Sqrt[3]], {n, 1, z}];  (* A022838 *)
    v1 = Complement[Range[Max[v]], v];  (* A054406 *)
    Table[u[[v[[n]]]], {n, 1, zz}]    (* A356088 *)
    Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356089 *)
    Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356090 *)
    Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356091 *)