Original entry on oeis.org
1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, 28, 31, 33, 35, 38, 41, 43, 45, 48, 50, 53, 55, 57, 60, 63, 65, 67, 70, 72, 74, 77, 80, 82, 84, 87, 90, 91, 94, 97, 100, 101, 104, 107, 108, 111, 114, 117, 118, 121, 124, 127, 128, 131, 134, 135, 138, 141, 144, 145
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088.
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089.
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090.
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091.
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}]; (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}]; (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}]; (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}]; (* A356091 *)
-
from math import isqrt
def A356088(n): return isqrt(isqrt(3*n*n)**2<<1) # Chai Wah Wu, Aug 06 2022
Original entry on oeis.org
2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, 39, 42, 46, 49, 52, 56, 59, 62, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 98, 103, 106, 110, 113, 115, 120, 123, 125, 130, 132, 137, 140, 142, 147, 149, 152, 156, 159, 162, 166, 169, 173, 176, 179, 183, 186, 189, 193
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088.
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089.
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090.
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091.
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *)
Original entry on oeis.org
3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, 68, 75, 81, 85, 92, 99, 105, 109, 116, 122, 129, 133, 139, 146, 153, 157, 163, 170, 174, 180, 187, 194, 198, 204, 211, 218, 221, 228, 235, 242, 245, 252, 259, 262, 269, 276, 283, 286, 293, 300, 307, 310, 317, 324
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *)
Original entry on oeis.org
1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, 36, 38, 41, 43, 45, 48, 50, 53, 55, 57, 60, 62, 65, 67, 71, 72, 74, 77, 79, 83, 84, 86, 90, 91, 95, 96, 98, 102, 103, 107, 109, 112, 114, 116, 119, 121, 124, 126, 128, 131, 133, 136, 138, 142, 143, 145, 148
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
-
from math import isqrt
def A356180(n): return isqrt(3*isqrt(n**2<<1)**2) # Chai Wah Wu, Sep 06 2022
Showing 1-4 of 4 results.
Comments