A346308
Intersection of Beatty sequences for sqrt(2) and sqrt(3).
Original entry on oeis.org
1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, 36, 38, 39, 41, 43, 45, 46, 48, 50, 53, 55, 57, 60, 62, 65, 67, 69, 72, 74, 76, 77, 79, 83, 84, 86, 90, 91, 93, 96, 98, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 140, 142, 145, 147, 148, 152, 154
Offset: 1
Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...).
Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...).
a(n) = (1,5,8,12,...).
In the notation in Comments:
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085.
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A346308_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),(isqrt(n*n<<1) for n in count(1)))
A346308_list = list(islice(A346308_gen(),30)) # Chai Wah Wu, Aug 06 2022
Original entry on oeis.org
6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, 95, 102, 112, 119, 126, 136, 143, 150, 160, 167, 177, 184, 191, 201, 208, 215, 225, 232, 238, 249, 256, 266, 273, 279, 290, 297, 303, 314, 320, 331, 338, 344, 355, 361, 368, 378, 385, 392, 402, 409, 419, 426, 433
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *)
Original entry on oeis.org
2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, 42, 49, 52, 56, 59, 63, 66, 70, 73, 80, 82, 87, 89, 94, 97, 101, 104, 106, 108, 111, 113, 115, 118, 120, 123, 125, 127, 130, 132, 134, 137, 141, 144, 149, 151, 156, 158, 165, 172, 175, 179, 182, 186, 189, 196
Offset: 1
(1) u ^ v = (1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2) u ^ v' = (2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, 35, ...) = A356085
(3) u' ^ v = (3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, ...) = A356086
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
t1 = Intersection[u, v] (* A346308 *)
t2 = Intersection[u, v1] (* A356085 *)
t3 = Intersection[u1, v] (* A356086 *)
t4 = Intersection[u1, v1] (* A356087 *)
Original entry on oeis.org
3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, 88, 95, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 143, 150, 157, 174, 180, 187, 204, 211, 218, 221, 225, 228, 232, 235, 242, 245, 249, 252, 256, 259, 266, 273, 284, 285, 287, 289, 290, 292, 294
Offset: 1
(1) u ^ v = ( 1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2) u ^ v' = ( 2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085
(3) u' ^ v = ( 3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
-
z = 200;
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
Intersection[u, v] (* A346308 *)
Intersection[u, v1] (* A356085 *)
Intersection[u1, v] (* A356086 *)
Intersection[u1, v1] (* A356087 *)
-
from math import isqrt
from itertools import count, islice
def A356086_gen(): # generator of terms
return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),((k:=n<<1)+isqrt(k*n) for n in count(1)))
A356086_list = list(islice(A356086_gen(),30)) # Chai Wah Wu, Aug 06 2022
Original entry on oeis.org
23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, 92, 99, 139, 146, 153, 160, 163, 167, 170, 177, 184, 191, 194, 198, 201, 208, 215, 238, 262, 269, 276, 279, 283, 286, 288, 291, 293, 295, 298, 300, 302, 305, 307, 309, 312, 314, 317, 319, 321, 324, 326, 328
Offset: 1
(1) u ^ v = ( 1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308.
(2) u ^ v' = ( 2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085.
(3) u' ^ v = ( 3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086.
(4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087.
-
r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *)
u1 = Take[Complement[Range[1000], u], z] (* A001952 *)
r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *)
v1 = Take[Complement[Range[1000], v], z] (* A054406 *)
Intersection[u, v] (* A346308 *)
Intersection[u, v1] (* A356085 *)
Intersection[u1, v] (* A356086 *)
Intersection[u1, v1] (* A356087 *)
Original entry on oeis.org
2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, 39, 42, 46, 49, 52, 56, 59, 62, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 98, 103, 106, 110, 113, 115, 120, 123, 125, 130, 132, 137, 140, 142, 147, 149, 152, 156, 159, 162, 166, 169, 173, 176, 179, 183, 186, 189, 193
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088.
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089.
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090.
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091.
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *)
Original entry on oeis.org
3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, 68, 75, 81, 85, 92, 99, 105, 109, 116, 122, 129, 133, 139, 146, 153, 157, 163, 170, 174, 180, 187, 194, 198, 204, 211, 218, 221, 228, 235, 242, 245, 252, 259, 262, 269, 276, 283, 286, 293, 300, 307, 310, 317, 324
Offset: 1
(1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088
(2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089
(3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090
(4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091
-
z = 600; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *)
Original entry on oeis.org
1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, 36, 38, 41, 43, 45, 48, 50, 53, 55, 57, 60, 62, 65, 67, 71, 72, 74, 77, 79, 83, 84, 86, 90, 91, 95, 96, 98, 102, 103, 107, 109, 112, 114, 116, 119, 121, 124, 126, 128, 131, 133, 136, 138, 142, 143, 145, 148
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
-
from math import isqrt
def A356180(n): return isqrt(3*isqrt(n**2<<1)**2) # Chai Wah Wu, Sep 06 2022
Original entry on oeis.org
2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, 49, 52, 56, 59, 61, 66, 68, 73, 75, 78, 82, 85, 89, 92, 97, 99, 101, 106, 108, 113, 115, 118, 123, 125, 130, 132, 134, 139, 141, 146, 149, 153, 156, 158, 163, 165, 170, 172, 175, 179, 182, 186, 189, 194
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
Original entry on oeis.org
5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, 81, 88, 93, 100, 105, 110, 117, 122, 129, 135, 140, 147, 152, 159, 164, 171, 176, 181, 188, 193, 200, 206, 211, 218, 223, 230, 235, 240, 247, 252, 259, 265, 271, 277, 282, 289, 294, 301, 306, 311, 318, 323
Offset: 1
(1) v o u = (1, 3, 6, 8, 12, 13, 15, 19, 20, 24, 25, 27, 31, 32, ...) = A356180
(2) v' o u = (2, 4, 9, 11, 16, 18, 21, 26, 28, 33, 35, 37, 42, 44, ...) = A356181
(3) v o u' = (5, 10, 17, 22, 29, 34, 39, 46, 51, 58, 64, 69, 76, ...) = A356182
(4) v' o u' = (7, 14, 23, 30, 40, 47, 54, 63, 70, 80, 87, 94, 104, ...) = A356183
-
z = 800; zz = 100;
u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *)
u1 = Complement[Range[Max[u]], u]; (* A001952 *)
v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *)
v1 = Complement[Range[Max[v]], v]; (* A054406 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A356180 *)
Table[v1[[u[[n]]]], {n, 1, zz}] (* A356181 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A356182 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A356183 *)
-
from math import isqrt
def A356182(n): return isqrt(3*((k:=n<<1)+isqrt(k*n))**2) # Chai Wah Wu, Sep 05 2022
Showing 1-10 of 11 results.
Comments